等價類劃分法將不能窮舉的測試過程進行合理分類,從而保證設計出來的測試用例具有完整性和**性。有數據輸入的地方,可以使用等價類劃分法。從大量數據中挑選少量**數據進行測試有效等價類:符合需求規格說明書規定的數據用來測試功能是否正確實現無效等價類:不合理的輸入數據**—用來測試程序是否有強大的異常處理能力(健壯性)使用**少的測試數據,達到**好的測試質量邊界值分析法對輸入或輸出的邊界值進行測試的一種黑盒測試方法。是作為對等價類劃分法的補充,這種情況下,其測試用例來自等價類的邊界。邊界點1、邊界是指相對于輸入等價類和輸出等價類而言,稍高于、稍低于其邊界值的一些特定情況。2、邊界點分為上點、內點和離點。如果是范圍[1,100]需要選擇0,1,2,50,99,100,101如果是個數**多20個[0,20]需要測0,10,20,-1,21因果圖分析法用畫圖的方式表達輸入條件和輸出結果之間的關系。1恒等2與3或4非5互斥1個或者不選6***必須是1個7包含可以多選不能不選8要求如果a=1,則要求b必須是1,反之如果a=0時,b的值無所謂9**關系當a=1時,要求b必須為0;而當a=0時。艾策檢測團隊采用多模態傳感器融合技術,構建智能工廠設備狀態健康監測體系。山東軟件評測
快速原型模型部分需求-原型-補充-運行外包公司預先不能明確定義需求的軟件系統的開發,更好的滿足用戶需求并減少由于軟件需求不明確帶來的項目開發風險。不適合大型系統的開發,前提要有一個展示性的產品原型,在一定程度上的補充,限制開發人員的創新。螺旋模型每次功能都要**行風險評估,需求設計-測試很大程度上是一種風險驅動的方法體系,在每個階段循環前,都進行風險評估。需要有相當豐富的風險評估經驗和專門知識,在風險較大的項目開發中,很有必要,多次迭代,增加成本。軟件測試模型需求分析-概要設計-詳細設計-開發-單元測試-集成測試-系統測試-驗收測試***清楚標識軟件開發的階段包含底層測試和高層測試采用自頂向下逐步求精的方式把整個開發過程分成不同的階段,每個階段的工作都很明確,便于控制開發過程。缺點程序已經完成,錯誤在測試階段發現或沒有發現,不能及時修改而且需求經常變化導致V步驟反復執行,工作量很大。W模型開發一個V測試一個V用戶需求驗收測試設計需求分析系統測試設計概要設計集成測試設計詳細設計單元測試設計編碼單元測試集成集成測試運行系統測試交付驗收測試***測試更早的介入,可以發現開發初期的缺陷。天津性能軟件檢測報告第三方測評顯示軟件運行穩定性達99.8%,未發現重大系統崩潰隱患。
每一種信息的來源或者形式,都可以稱為一種模態。例如,人有觸覺,聽覺,視覺,嗅覺。多模態機器學習旨在通過機器學習的方法實現處理和理解多源模態信息的能力。多模態學習從1970年代起步,經歷了幾個發展階段,在2010年后***步入深度學習(deeplearning)階段。在某種意義上,深度學習可以被看作是允許我們“混合和匹配”不同模型以創建復雜的深度多模態模型。目前,多模態數據融合主要有三種融合方式:前端融合(early-fusion)即數據水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個**的數據集融合成一個單一的特征向量空間,然后將其用作機器學習算法的輸入,訓練機器學習模型,如圖1所示。由于多模態數據的前端融合往往無法充分利用多個模態數據間的互補性,且前端融合的原始數據通常包含大量的冗余信息。因此,多模態前端融合方法常常與特征提取方法相結合以剔除冗余信息,基于領域經驗從每個模態中提取更高等別的特征表示,或者應用深度學習算法直接學習特征表示,然后在特性級別上進行融合。后端融合則是將不同模態數據分別訓練好的分類器輸出決策進行融合,如圖2所示。
將三種模態特征和三種融合方法的結果進行了對比,如表3所示。從表3可以看出,前端融合和中間融合較基于模態特征的檢測準確率更高,損失率更低。后端融合是三種融合方法中較弱的,雖然明顯優于基于dll和api信息、pe格式結構特征的實驗結果,但稍弱于基于字節碼3-grams特征的結果。中間融合是三種融合方法中**好的,各項性能指標都非常接近**優值。表3實驗結果對比本實施例提出了基于多模態深度學習的惡意軟件檢測方法,提取了三種模態的特征(dll和api信息、pe格式結構信息和字節碼3-grams),提出了通過三種融合方式(前端融合、后端融合、中間融合)集成三種模態的特征,有效提高惡意軟件檢測的準確率和魯棒性。實驗結果顯示,相對**且互補的特征視圖和不同深度學習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優的中間融合方法取得了%的準確率,對數損失為,auc值為,各項性能指標已接近**優值。考慮到樣本集可能存在噪聲,本實施例提出的方法已取得了比較理想的結果。由于惡意軟件很難同時偽造多個模態的特征,本實施例提出的方法比單模態特征方法更魯棒。以上所述*為本發明的較佳實施例而已,并非用于限定本發明的保護范圍。專業機構認證該程序內存管理效率優于行業平均水平23%。
***級初始級TMM初始級軟件測試過程的特點是測試過程無序,有時甚至是混亂的,幾乎沒有妥善定義的。初始級中軟件的測試與調試常常被混為一談,軟件開發過程中缺乏測試資源,工具以及訓練有素的測試人員。初始級的軟件測試過程沒有定義成熟度目標。第二級定義級TMM的定義級中,測試己具備基本的測試技術和方法,軟件的測試與調試己經明確地被區分開。這時,測試被定義為軟件生命周期中的一個階段,它緊隨在編碼階段之后。但在定義級中,測試計劃往往在編碼之后才得以制訂,這顯然有背于軟件工程的要求。TMM的定義級中需實現3個成熟度目標:制訂測試與調試目標,啟動測試計劃過程,制度化基本的測試技術和方法。(I)制訂測試與調試目標軟件**必須消晰地區分軟件開發的測試過程與調試過程,識別各自的目標,任務和括動。正確區分這兩個過程是提高軟件**測試能力的基礎。與調試工作不同,測試工作是一種有計劃的活動,可以進行管理和控制。這種管理和控制活動需要制訂相應的策略和政策,以確定和協調這兩個過程。制訂測試與調試目標包含5個子成熟度目標:1)分別形成測試**和調試**,并有經費支持。2)規劃并記錄測試目標。3)規劃井記錄調試目標。4)將測試和調試目標形成文檔。漏洞掃描報告顯示依賴庫存在5個已知CVE漏洞。昆明軟件驗收測試公司
基于 AI 視覺識別的自動化檢測系統,助力艾策實現生產線上的零缺陷品控目標!山東軟件評測
之所以被稱為黑盒測試是因為可以將被測程序看成是一個無法打開的黑盒,而工作人員在不軟件測試方法考慮任何程序內部結構和特性的條件下,根據需求規格說明書設計測試實例,并檢查程序的功能是否能夠按照規范說明準確無誤的運行。其主要是對軟件界面和軟件功能進行測試。對于黑盒測試行為必須加以量化才能夠有效的保證軟件的質量。[5](2)白盒測試。其與黑盒測試不同,它主要是借助程序內部的邏輯和相關信息,通過檢測內部動作是否按照設計規格說明書的設定進行,檢查每一條通路能否正常工作。白盒測試是從程序結構方面出發對測試用例進行設計。其主要用于檢查各個邏輯結構是否合理,對應的模塊**路徑是否正常以及內部結構是否有效。常用的白盒測試法有控制流分析、數據流分析、路徑分析、程序變異等,其中邏輯覆蓋法是主要的測試方法。[5](3)灰盒測試。灰盒測試則介于黑盒測試和白盒測試之間。灰盒測試除了重視輸出相對于出入的正確性,也看重其內部表現。但是它不可能像白盒測試那樣詳細和完整。它只是簡單的靠一些象征性的現象或標志來判斷其內部的運行情況,因此在內部結果出現錯誤,但輸出結果正確的情況下可以采取灰盒測試方法。因為在此情況下灰盒比白盒**。山東軟件評測