新能源發電:
風力發電:
變頻交流電轉換:風力發電機捕獲風能之后,產生的電能頻率和電壓不穩定,IGBT模塊用于變流器中,將不穩定的電能轉換為符合電網要求的交流電,實現與電網的穩定并網。
最大功率追蹤:通過精確控制,可實現最大功率追蹤,提高風能的利用率,同時保障電力平穩并入電網,減少對電網的沖擊。
適應不同機組類型:可用于直驅型風力發電機組,直接連接發電機與電網,實現電機的最大功率點跟蹤(MPPT),提升發電效率。 模塊內部集成保護電路,有效防止過壓、過流等異常工況。廣東4-pack四單元igbt模塊
高效電能轉換:IGBT 模塊能夠實現直流到交流(逆變)、交流到直流(整流)以及交直流電壓變換等功能,且在轉換過程中具有較高的效率。例如在新能源汽車的充電樁中,它可將電網的交流電轉換為適合給汽車電池充電的直流電,同時在車載逆變器中,又能將電池的直流電轉換為交流電,為車內的空調、音響等交流設備供電。
精確電力控制:IGBT 模塊可以通過控制其柵極電壓來精確地控制其導通和關斷,從而實現對電路中電流、電壓的精確控制。在電機驅動系統中,通過調節 IGBT 模塊的導通時間和頻率,可以精確控制電機的轉速和扭矩,使電機能夠根據實際需求高效運行,廣泛應用于工業自動化中的電機調速、機器人控制等領域。 北京電源igbt模塊IGBT模塊的高頻應用能力,推動電力電子向小型化、輕量化發展。
按封裝形式:
IGBT 單管:將單個 IGBT 芯片與 FRD(快速恢復二極管)芯片以分立式晶體管的形式封裝在銅框架上,封裝規模小,電流較小,適用于消費和工業家電等對功率要求不高的場景。
IGBT 模塊:將多個 IGBT 芯片與 FRD 芯片通過特定電路橋接而成的模塊化產品,具有更高的集成度和散熱穩定性,常用于對功率要求較高的場合,如工業變頻器、新能源汽車等。
按內部結構:
穿通 IGBT(PT - IGBT):發射極接觸處具有 N + 區,包括 N + 緩沖層,也叫非對稱 IGBT,具有不對稱的電壓阻斷能力,其特點是導通壓降較低,但關斷速度相對較慢,適用于對導通損耗要求較高的應用,如低頻、大功率的變流器。
非穿通 IGBT(NPT - IGBT):沒有額外的 N + 區域,結構對稱性提供了對稱的擊穿電壓特性,關斷速度快,開關損耗小,但導通壓降相對較高,常用于高頻、開關速度要求高的場合,如開關電源、高頻逆變器等。
智能 IGBT(i-IGBT)模塊化設計集成功能:在模塊內部集成溫度傳感器(如集成式 NTC)、電流傳感器(如磁阻式)和驅動芯片,通過內置微控制器(MCU)實現本地閉環控制(如自動調整柵極電阻抑制振蕩)。通信接口:支持 SPI、CAN 等總線協議,與系統主控實時交互狀態數據(如Tj、Vce),實現全局協同控制(如多模塊并聯時的均流調節)。
多芯片并聯與均流技術硬件均流方法:柵極電阻匹配:選擇阻值公差<5% 的柵極電阻,結合動態驅動技術,使并聯 IGBT 的開關時間偏差<5%。電感均流網絡:在發射極串聯小電感(如 10nH),抑制動態電流不均衡(不均衡度可從 15% 降至 5% 以下),適用于兆瓦級變流器(如風電變流器)。 模塊的抗干擾能力強,適應惡劣電磁環境下的穩定工作。
覆銅陶瓷基板(DBC基板):主要由中間的陶瓷絕緣層以及上下兩面的覆銅層組成,類似于2層PCB電路板,但中間的絕緣材料是陶瓷而非PCB常用的FR4。它起到絕緣、導熱和機械支撐的作用,既能保證IGBT芯片與散熱基板之間的電絕緣,又能將IGBT芯片工作時產生的熱量快速傳導出去,同時為電路線路提供支撐和繪制的基礎,覆銅層上可刻蝕出各種圖形用于繪制電路線路。鍵合線:用于實現IGBT模塊內部的電氣互聯,連接IGBT芯片、二極管芯片、焊點以及其他部件,常見的有鋁線和銅線兩種。鋁線鍵合工藝成熟、成本低,但電學和熱力學性能較差,膨脹系數失配大,會影響IGBT的使用壽命;銅線鍵合工藝具有優良的電學和熱力學性能,可靠性高,適用于高功率密度和高效散熱的模塊。隨著技術迭代升級,IGBT模塊將持續領銜電力電子創新發展。Standard 1-packigbt模塊供應
模塊的低電磁輻射特性,減少對周邊電子設備的干擾影響。廣東4-pack四單元igbt模塊
散熱基板:一般由銅制成,因為銅具有良好的導熱性,不過也有其他材料制成的基板,例如鋁碳化硅(AlSiC)等。銅基板的厚度通常在3 - 8mm。它是IGBT模塊的散熱功能結構與通道,主要負責將IGBT芯片工作過程中產生的熱量快速傳遞出去,以保證模塊的正常工作溫度,同時還發揮機械支撐與結構保護的作用。二極管芯片:通常與IGBT芯片配合使用,其電流方向與IGBT的電流方向相反。二極管芯片可以在IGBT關斷時提供續流通道,防止電流突變產生過高的電壓尖峰,保護IGBT芯片免受損壞。廣東4-pack四單元igbt模塊