局部放電在線監測系統軟件的檢測參數設置功能為檢測人員提供了極大的靈活性。在復雜多變的電力現場環境中,不同的設備狀況和運行要求使得調整檢測參數成為必要。以傳感器相關參數設置為例,檢測人員可依據現場干擾情況、設備類型以及安裝位置,對傳感器的靈敏度、頻率響應范圍等參數進行優化。比如在電磁干擾較強的變電站區域,適當降低傳感器對特定干擾頻段的靈敏度,同時增強對局部放電信號特征頻段的響應,確保能精細捕捉局部放電信號,減少干擾影響,提升檢測準確性。杭州國洲電力科技有限公司在線監測技術的標準化設計與實施。浙江振動在線監測系統原理
本系統在實際應用中,能夠與其他電力設備監測系統進行有效融合。例如,它可以與 GIS 設備的溫度監測系統、壓力監測系統等進行數據交互和共享。通過綜合分析不同監測系統的數據,能夠更***地了解 GIS 設備的運行狀態。例如,當局部放電監測系統檢測到異常放電信號時,結合溫度監測系統發現設備局部溫度升高,可進一步判斷可能存在的絕緣故障原因,為設備的綜合評估和故障診斷提供更豐富的數據支持和服務,提高了電力系統整體的運維水平。局放在線監測產品參數振動聲學指紋監測技術在農業生產設備監測中的應用價值是什么?
3.1局部放電在線監測子系統3.1.1功能描述變壓器在生產制造、運輸、安裝及運行過程中,由于原材料、加工工藝、沖擊碰撞或老化等原因,在繞組、絕緣體內部等處易產生絕緣缺陷。當絕緣缺陷處集中的電場強度達到該區域的擊穿場強時,就會出現局部放電現象。局部放電是變壓器絕緣劣化的主要原因,也是其絕緣故障的早期表現形式。因此,在線監測局部放電可實現變壓器絕緣故障的監測及故障早期預警,對提高變壓器運行穩定性及電網供電可靠性具有重要意義。
自動捕捉并記錄啟動報警的局放信號,為故障分析提供了寶貴的數據資源。系統在報警的同時,精確記錄下報警時刻的局部放電信號的詳細參數,包括幅值、相位、波形等。這些數據可在后續通過數據查看分析比對功能進行深入研究。例如,通過對比不同時間點啟動報警的局放信號,運維人員可以分析故障的發展趨勢,判斷故障是逐漸惡化還是偶然出現。同時,這些記錄的數據也可作為歷史案例,用于訓練故障診斷模型,提高系統對類似故障的診斷準確性和預警能力。在通信基站設備維護中,該技術能帶來哪些好處?
監測設備能檢測到發生在被監測設備內部各處的、放電量不超過20pC的局部放電信號,并可準確判斷放電缺陷的類型。為保證監測靈敏度,UHF傳感器的配置不會低于以下的配置方案:(1)500kVHGIS設備一個完整串18個傳感器,GIS母線每間隔6m布置1個傳感器;(2)500kVGIS設備一個完整串36個傳感器,GIS母線每間隔6m布置1個傳感器;(3)220kVGIS設備(母線分箱結構)主變、出線間隔12個,母聯、分段、PT間隔6個,GIS母線每隔10m布置1個傳感器;(4)220kVGIS設備(母線共箱結構)主變、出線間隔12個,母聯、分段、PT間隔6個,GIS母線每隔10m布置1個傳感器;(5)110kVGIS設備(分箱結構)主變、出線間隔9個,母聯、分段、PT間隔6個,GIS母線每隔10m布置1個傳感器;(6)110kVGIS設備(共箱結構)主變、出線間隔3個,母聯、分段、PT間隔2個,GIS母線每隔10m布置1個傳感器。杭州國洲電力科技有限公司局部放電在線監測技術的智能化發展趨勢。檢測在線監測電話
振動聲學指紋在線監測技術如何推動工業物聯網的發展?浙江振動在線監測系統原理
3.3.1.3能量分布曲線基于小波變換的聲紋振動信號多分辨率分析結果如下圖3.8所示。原始信號經8層分解后產生第8層的近似分量和第1層至第8層的詳細分量,計算各層詳細分量信號能量,可獲得信號能量分布曲線。比對正常狀態與異常狀態能量分布曲線,可判斷OLTC運行狀態,并提取互相關系數、最大值、平均值、峰度、偏度作為狀態診斷特征參量。下圖3.7為正常與異常狀態的聲紋振動信號能量分布曲線比對。
3.3.1.4時頻能量分布矩陣(ATF圖譜)獲取聲紋振動信號的時頻能量分布矩陣,同時反映原始信號時域、頻域特性及能量分布。將信號時頻分布矩陣分為6個區間,計算各區間平均值作為特征參量,用于OLTC正常狀態與異常狀態比對。下圖3.9為正常狀態下聲紋振動信號時頻能量矩陣。 浙江振動在線監測系統原理