陽能光伏陣列安裝于露天環境,需重點防護直擊雷與感應雷。組件支架采用 40×4mm 熱鍍鋅扁鋼做環形接地,每排支架兩端與接地扁鋼焊接(焊接長度≥100mm),支架間距≤15 米時增加中間接地點。光伏板邊框通過 2.5mm2 銅編織帶與支架等電位連接,每塊板至少 2 處連接點。逆變器、匯流箱外殼需設置專門用于接地端子,通過 6mm2 銅纜與光伏系統接地網連接,接地網單獨敷設(距組件基礎≥1 米),接地電阻≤4Ω。直流線纜采用屏蔽電纜,穿金屬導管敷設,屏蔽層兩端接地;交流線纜進出配電柜處安裝光伏專門用于浪涌保護器(SPD),其響應時間≤25ns,保護水平≤1.5kV。施工時避免損傷光伏板表面,接地焊...
數據中心對雷電電磁脈沖(LEMP)敏感,需構建 “外部直擊雷防護 + 內部感應雷屏蔽” 雙重體系。外部防護采用避雷帶(網格≤3m×3m)與避雷針組合,引下線間距≤10 米,沿機房四周均勻布置并做絕緣處理(距墻面≥100mm)。內部屏蔽通過機房六面敷設 0.3mm 厚鍍鋅鋼板(接縫處焊接),與接地網形成法拉第籠;橋架、線槽采用金屬材質并全程電氣連通,每段連接處跨接 6mm2 銅纜。電源系統設置三級浪涌保護:一級安裝于低壓配電柜(120kA),二級于 UPS 輸入側(40kA),三級于設備配電箱(20kA),SPD 接地線徑按 GB 50343-2012 要求配置(相線≤16mm2 時,接地線同截...
退役階段:建立防雷裝置壽命預測模型(基于腐蝕速率、SPD老化曲線),制定階梯式更換計劃,退役材料按環保要求處理,避免資源浪費與環境污染。在大型項目(如城市綜合體、工業園區)中,全生命周期管理可將防雷系統年均故障率降低60%,運維成本減少40%。隨著數字孿生技術成熟,未來可構建防雷工程的虛擬鏡像,實時模擬不同雷擊場景下的系統響應,提前優化防護策略,實現“預防為主、準確運維”的現代化管理目標。太陽能防雷監測裝置:利用光伏板為SPD狀態傳感器供電,減少傳統監測系統的電纜鋪設與能耗;雨水回收型接地系統:在接地網周邊設置滲水孔,結合雨水收集池保持土壤濕度,自然降低接地電阻;植被偽裝接閃器:將...
古建筑防雷需遵循 “較小干預” 原則,避免破壞文物本體。接閃器采用與建筑風格協調的隱形設計,如將避雷帶偽裝為屋脊吻獸、垂獸等構件(內部暗藏 Φ12 熱鍍鋅圓鋼),支持卡用銅制仿古構件固定,間距≤0.8 米。引下線沿墻體隱蔽敷設,利用建筑柱體內木柱包裹絕緣層(如陶瓷套管),或在墻體陰角處采用與墻體同色的銅纜(外包防腐層)。接地裝置優先利用古建筑原有石質基礎中的金屬構件,人工接地體選擇銅包鋼接地極(直徑 16mm,長度 2.5 米),埋設于離建筑基礎 3 米外的綠化帶內,接地電阻≤10Ω。等電位連接時,金屬匾額、風鈴等裝飾構件通過柔性銅編織帶連接,禁止在古建筑墻體上鉆孔焊接。施工前需經文物主管部門...
感應雷與雷電波侵入防護感應雷和雷電波侵入是雷電危害的主要間接形式,對電子設備和弱電系統威脅極大。感應雷源于雷電放電產生的電磁脈沖,通過靜電感應和電磁感應在導體上產生暫態過電壓;雷電波侵入則是雷電流沿電源線、信號線等導體傳導至設備內部,導致過電壓損壞。針對感應雷防護,需采取屏蔽、等電位連接和浪涌保護措施。屏蔽技術通過金屬屏蔽體隔離電磁脈沖,如建筑物采用鋼筋混凝土框架形成法拉第籠,對電纜采用金屬線槽或屏蔽電纜。等電位連接通過接地母線將設備外殼、金屬管道、構架等連接成統一電位體,消除電位差引發的反擊現象,常見的有S型和M型等電位連接網絡。雷電波侵入防護的重要是安裝浪涌保護器(SPD),根據防護層級分...
醫院手術室、ICU 等區域的精密醫療設備對雷電電磁干擾敏感,防雷施工需強化等電位連接與屏蔽措施。建筑物外部接閃器采用避雷網(網格≤5m×5m),引下線間距≤12 米,在設備層增設均壓環(40×4mm 扁鋼,間距≤6 米)。內部醫療設備接地采用 S 型星型接地結構,設備外殼通過 2.5mm2 銅纜連接至專門用于接地端子箱,端子箱與建筑物接地網之間通過 40×4mm 扁鋼單點連接(避免形成接地環路)。電源系統三級浪涌保護:一級(80kA)安裝于配電室,二級(40kA)于樓層配電箱,三級(20kA)于設備插座處,SPD 接地線徑按相線截面積 1/2 配置(**小≥4mm2)。影像設備(如 MRI、C...
雷電預警系統原理與應用場景 雷電預警系統通過探測大氣電場變化、雷云電荷聚集程度,實現對雷電發生的提前預報,是主動防護的重要技術。主要分為三類: 1. **大氣電場儀**:測量地面垂直電場強度,當電場>30kV/m時發出黃色預警,>100kV/m時紅色預警,響應時間<1秒,適用于機場、景區等人員密集場所。 2. **閃電定位系統**:通過多個探測站接收雷電電磁信號(VLF/LF頻段),計算雷電流幅值、位置和時間,定位精度≤500米,為電力、通信系統提供區域雷電動態數據。 3. **衛星遙感預警**:利用氣象衛星監測云頂溫度和電荷分布,提前數小時預測雷暴移動路徑,適用于大范圍災害性天氣預警。古建筑...
新能源領域防雷工程特點新能源領域(如光伏電站、風力發電場、充電樁)具有設備分散、露天運行和高壓直流特性,其防雷工程面臨獨特挑戰。需針對新能源設備的電氣特性和安裝環境,制定專項防護方案。光伏電站防雷需重點保護太陽能電池板、逆變器和匯流箱。電池板作為露天設備,需在支架上安裝接閃器,支架與接地系統可靠連接;直流線纜應穿金屬管敷設,在逆變器輸入端安裝直流浪涌保護器,抑制雷電波沿直流線路侵入。由于光伏系統存在多路并聯匯流,需注意各支路的等電位連接,避免電位差導致的設備損壞。直流接地系統采用雙向陽極保護(防雜散電流)。甘肅特種防雷工程防雷工程施工油庫、化工廠等易燃易爆場所防雷施工需滿足 GB 50650-...
雷電暫態仿真技術在防雷設計中的應用雷電暫態仿真通過電磁暫態程序(如ATP-EMTP、CDEGS)模擬雷電流傳播特性,解決傳統設計中過電壓分布不明確、防護器件配合不佳等問題。仿真流程包括:1.建模:建立接閃器、引下線、接地網的三維幾何模型,導入土壤電阻率、設備阻抗等參數;2.激勵設置:選擇雷電流波形(如8/20μs、2.6/50μs),設定雷擊位置(直擊雷/感應雷);3.求解計算:分析雷電流在系統中的分布,獲取各節點過電壓、接地體電位升、SPD殘壓等關鍵數據;4.優化設計:根據仿真結果調整接閃器高度、SPD安裝位置或接地體布局,直至滿足設備耐受閾值。在特高壓變電站設計中,仿真技術可精確計算避雷器...
接地體施工需遵循"深散結合"原則,水平接地體埋深不小于0.7米,垂直接地體間距不小于5米以減少屏蔽效應。在巖石地區可采用鉆孔深埋接地體或敷設降阻劑,降阻劑需選擇物理型產品,避免對土壤環境造成污染。引下線與接閃器、接地體的連接必須采用焊接,搭接長度不小于材料直徑的6倍(圓鋼)或寬度的2倍(扁鋼),焊接處做防腐處理。防雷接地系統施工完成后,需進行接地電阻測量,常用方法有四極法、鉗表法和電位降法。測量時需注意土壤濕度和溫度的影響,確保數據準確。材料選型和施工質量是防雷接地系統的關鍵環節,需嚴格按照國家標準和設計圖紙執行,杜絕偷工減料和違規操作,保障防雷工程的長期可靠性。防雷裝置焊接處需打磨光滑(粗糙...
陽能光伏陣列安裝于露天環境,需重點防護直擊雷與感應雷。組件支架采用 40×4mm 熱鍍鋅扁鋼做環形接地,每排支架兩端與接地扁鋼焊接(焊接長度≥100mm),支架間距≤15 米時增加中間接地點。光伏板邊框通過 2.5mm2 銅編織帶與支架等電位連接,每塊板至少 2 處連接點。逆變器、匯流箱外殼需設置專門用于接地端子,通過 6mm2 銅纜與光伏系統接地網連接,接地網單獨敷設(距組件基礎≥1 米),接地電阻≤4Ω。直流線纜采用屏蔽電纜,穿金屬導管敷設,屏蔽層兩端接地;交流線纜進出配電柜處安裝光伏專門用于浪涌保護器(SPD),其響應時間≤25ns,保護水平≤1.5kV。施工時避免損傷光伏板表面,接地焊...
等電位連接是防止雷電反擊的重要措施,需將建筑物內金屬構件、電氣設備外殼、管道系統等與防雷接地系統做電氣連通。金屬門窗、幕墻龍骨等外露金屬部件,應通過 Φ12 圓鋼或 25×4mm 扁鋼與引下線焊接,焊接長度≥100mm。配電箱、控制柜等電氣設備外殼應設置專門用于接地端子,通過 4mm2 多股銅纜與就近等電位端子箱連接。燃氣管道、消防管道等金屬管線,在進出建筑物處需做跨接處理,跨接線采用 6mm2 銅纜,兩端用銅鼻子壓接并做防腐處理。等電位端子箱安裝高度為底邊距地 0.3 米,箱內端子排應標注清晰,連接導線應采用黃綠雙色接地專門用于線,線徑符合 GB 50169-2016《接地裝置施工及驗收規范...
國際防雷標準與國內規范差異分析防雷工程設計需兼顧國際標準(如IEC62305系列)與國內規范(GB50057、GB50343),了解差異有助于跨國項目實施和技術對接。防護分區(LPZ)劃分:IEC采用風險管理導向的LPZ0-3分區,強調電磁環境分級防護;國內規范側重建筑物分類(一、二、三類),兩者可通過風險評估建立對應關系(如一類建筑對應LPZ0A-LPZ2)。接地電阻要求:IEC未明確規定具體阻值,強調接地系統的等電位連接和低阻抗特性;國內規范對不同類別建筑規定明確限值(一類≤10Ω,二類≤4Ω),在高土壤電阻率地區允許放寬至30Ω(需采取屏蔽措施)。鐵路系統的特種防雷工程確保信號傳輸穩定,...
接地體施工需遵循"深散結合"原則,水平接地體埋深不小于0.7米,垂直接地體間距不小于5米以減少屏蔽效應。在巖石地區可采用鉆孔深埋接地體或敷設降阻劑,降阻劑需選擇物理型產品,避免對土壤環境造成污染。引下線與接閃器、接地體的連接必須采用焊接,搭接長度不小于材料直徑的6倍(圓鋼)或寬度的2倍(扁鋼),焊接處做防腐處理。防雷接地系統施工完成后,需進行接地電阻測量,常用方法有四極法、鉗表法和電位降法。測量時需注意土壤濕度和溫度的影響,確保數據準確。材料選型和施工質量是防雷接地系統的關鍵環節,需嚴格按照國家標準和設計圖紙執行,杜絕偷工減料和違規操作,保障防雷工程的長期可靠性。接閃帶固定支架間距≤1m(屋面...
針對常見質量問題,需在施工中加強過程控制。接地體焊接不規范(如搭接長度不足、未雙面施焊),應在技術交底時明確焊接工藝標準,質檢員現場抽查焊縫長度和外觀,不合格處返工并二次驗收。避雷帶支架間距過大(導致晃動),需嚴格按設計間距(≤1 米)安裝,轉彎處加密至 0.5 米,支架與墻體固定采用膨脹螺栓(M10 以上),禁止使用水泥粘結。等電位連接漏接(如金屬門窗、管道未連接),應在施工圖中標記所有金屬構件位置,施工完成后采用導通性測試儀逐點檢測(過渡電阻≤0.03Ω)。防腐處理遺漏(如焊接點未刷漆),需建立防腐工序驗收表,對所有焊接點、螺栓連接點進行逐一檢查,防腐層厚度采用磁性測厚儀測量(偏差≤-5%...
雷電暫態仿真技術在防雷設計中的應用雷電暫態仿真通過電磁暫態程序(如ATP-EMTP、CDEGS)模擬雷電流傳播特性,解決傳統設計中過電壓分布不明確、防護器件配合不佳等問題。仿真流程包括:1.建模:建立接閃器、引下線、接地網的三維幾何模型,導入土壤電阻率、設備阻抗等參數;2.激勵設置:選擇雷電流波形(如8/20μs、2.6/50μs),設定雷擊位置(直擊雷/感應雷);3.求解計算:分析雷電流在系統中的分布,獲取各節點過電壓、接地體電位升、SPD殘壓等關鍵數據;4.優化設計:根據仿真結果調整接閃器高度、SPD安裝位置或接地體布局,直至滿足設備耐受閾值。在特高壓變電站設計中,仿真技術可精確計算避雷器...
浪涌保護器配置:IEC推薦多級SPD的能量配合計算(I級≥12.5kA8/20μs),國內規范按配電系統層級(電源三級、信號兩級)規定通流容量,兩者在SPD安裝位置和退耦要求上基本一致。檢測周期:IEC建議根據風險等級動態調整(1-5年),國內規范實行固定周期(一類每年一次),特殊行業(石化、)需縮短至半年。在“”工程中,常采用“國內標準為主、IEC標準補充”的雙合規設計,如海外數據中心接地系統同時滿足GB50174與ITU-TK.27標準。理解差異并靈活應用,是提升防雷工程國際化水平的關鍵。防雷裝置材料耐腐蝕等級C5(工業污染區)。浙江古建筑防雷工程防雷工程價格新能源領域防雷工程特點新能源領...
對于高層建筑物,需特別注意側擊雷防護,在30米以上外墻上每三層設置一圈水平避雷帶,并與引下線可靠連接。屋頂太陽能設備、航空障礙燈等突出物應加裝單獨接閃器,確保處于接閃系統保護范圍內。在建筑物內部,強弱電線路應分開敷設,避免平行走線以減少電磁耦合;重要設備機房需設置單獨的等電位連接端子板,實現設備的局部等電位連接。設計圖紙需包含防雷平面圖、剖面圖和系統圖,標注接閃器位置、引下線編號、接地裝置規格及浪涌保護器安裝位置。同時,需編制設計說明,明確材料選型、施工工藝和檢測要求,確保工程實施的規范性和有效性。建筑物防雷設計是系統性工程,需兼顧安全性和經濟性,通過優化防護方案實現雷電災害的有效控制。接地電...
不同季節施工需針對性解決環境對防雷工程的影響。雨季施工時,接地體敷設應避開積水區域,開挖溝槽需設置排水井點,防止雨水浸泡基坑;焊接作業需搭建臨時遮雨棚,焊條使用前烘干(烘干溫度 100-150℃,保溫 1 小時),避免焊縫受潮產生氣孔。冬季施工時,當環境溫度低于 - 10℃,鋼材焊接前需預熱(預熱溫度 100-150℃),防止焊縫產生裂紋;接地體埋設深度需超過當地凍土層(通常≥1.2 米),回填土應去除凍土塊,采用細土分層夯實。高溫季節施工,需調整作業時間(避開 11:00-15:00),工人配備防暑藥品,材料堆放設置遮陽棚,避免熱鍍鋅鋼材表面鍍鋅層因高溫氧化脫落。臺風地區施工,接閃器安裝需加...
接地系統作為防雷體系的重要組成部分,其施工質量直接決定雷電泄放效率。垂直接地體宜選用 50×50×5mm 熱鍍鋅角鋼,長度 2.5 米,間距不小于 5 米以避免屏蔽效應,埋設時需垂直打入地下,頂端距地面不小于 0.6 米。水平接地體采用 40×4mm 熱鍍鋅扁鋼,沿建筑物基礎外面閉合敷設,轉彎處應做成圓弧型(半徑≥100mm)以減少雷電流集膚效應影響。接地體焊接必須采用雙面施焊,扁鋼搭接長度≥2 倍寬度,圓鋼搭接長度≥6 倍直徑,焊口需做防腐處理,先涂防銹漆兩道再刷銀粉漆一道。接地電阻測試應在土壤電阻率比較低的雨后 72 小時進行,采用四極法測量,當阻值不滿足設計要求時,可采用換土法、降阻劑法...
接地系統作為防雷體系的重要組成部分,其施工質量直接決定雷電泄放效率。垂直接地體宜選用 50×50×5mm 熱鍍鋅角鋼,長度 2.5 米,間距不小于 5 米以避免屏蔽效應,埋設時需垂直打入地下,頂端距地面不小于 0.6 米。水平接地體采用 40×4mm 熱鍍鋅扁鋼,沿建筑物基礎外面閉合敷設,轉彎處應做成圓弧型(半徑≥100mm)以減少雷電流集膚效應影響。接地體焊接必須采用雙面施焊,扁鋼搭接長度≥2 倍寬度,圓鋼搭接長度≥6 倍直徑,焊口需做防腐處理,先涂防銹漆兩道再刷銀粉漆一道。接地電阻測試應在土壤電阻率比較低的雨后 72 小時進行,采用四極法測量,當阻值不滿足設計要求時,可采用換土法、降阻劑法...
機場與航空防雷工程設計規范機場防雷涵蓋跑道、導航臺、航站樓和航空器,需滿足國際民航組織(ICAO)附件14與國內MH/T5005《民用機場防雷技術規范》。跑道燈光系統是防護重點,燈具外殼采用導電鋁合金并與接地網連接,供電電纜穿金屬導管敷設,每隔50米安裝一個路燈型浪涌保護器(耐沖擊電流≥20kA)。導航臺(如VOR、DME)需建立全頻段電磁屏蔽室,天線饋線安裝帶通濾波器型SPD(通帶范圍匹配導航信號頻率),接地系統采用“單點接地+輻射狀接地體”,接地電阻≤1Ω以抑制地電位波動。航站樓金屬屋面作為接閃器,支撐結構與引下線焊接成網格(網格尺寸≤10m×10m),玻璃幕墻的金屬框架每三層與均壓環連接...
港口與碼頭防雷工程關鍵技術港口設施(如集裝箱起重機、雷達導航、配電系統)長期處于高鹽霧、潮濕環境,防雷工程需解決電化學腐蝕與設備聯動保護問題。起重機金屬結構作為接閃器,需采用熱浸鋅防腐處理(鍍層厚度≥85μm),沿起重臂敷設多根引下線(間距≤15米),接地體使用銅包鋼材料(耐鹽霧腐蝕壽命≥30年)。碼頭配電系統采用“電纜橋架接地+多級SPD”防護,橋架每隔30米與接地網連接,電源SPD選用耐鹽霧型產品(爬電距離≥20mm),通流容量根據港口設備沖擊電流需求設計(通常≥65kA)。雷達導航站需在天線罩內安裝小型避雷針,饋線進入控制室前做“水密+接地”處理,防止海水倒灌與雷電波侵入。等電位連接方面...
電源系統防護采用三級浪涌保護架構,第1級在交流配電箱安裝大通流容量的電源SPD,第二級在開關電源輸入端設置中等通流容量SPD,第三級在設備前端安裝精細保護SPD。各級SPD之間需保持足夠的線纜長度(或加裝退耦器件),確保多級保護的協調配合。信號系統包括傳輸線、監控線和數據線,需根據傳輸速率和接口類型選擇相應的信號SPD,如E1/T1信號采用高頻同軸浪涌保護器,以太網信號采用網絡浪涌保護器。通信基站接地系統采用聯合接地方式,將工作接地、保護接地和防雷接地共用一組接地體,接地電阻要求不大于5Ω。機房內部設置環形接地母線,設備機架、金屬外殼均與接地母線連接,形成良好的等電位環境。此外,需定期對防雷設...
需在入戶端安裝大通流容量的 SPD(標稱放電電流≥40kA),并將電能表金屬外殼、避雷器接地端與房屋基礎接地體共網。針對農村常見的孤立樹木遭雷擊問題,可在樹木周圍 3 米外埋設環形接地體,降低樹干電位梯度,避免跨步電壓傷人。農業防雷需結合 GB/T 36264《鄉村建筑防雷技術規范》,優先利用自然接地體(如金屬圍欄、水井套管),降低工程成本。推廣 “防雷科普 + 簡易檢測” 模式,定期組織農戶檢查接閃器銹蝕情況和接地體連接可靠性,提升農村地區的雷電災害應對能力。變電站接地網電位升高控制≤2000V(人身安全標準)。浙江特種防雷施工防雷工程設備 當接地電阻超標或SPD失效時自動觸發報警...
新型防雷裝置原理與應用對比傳統避雷針(接閃桿)通過引雷入地實現保護,而新型防雷裝置如消雷器、提前放電避雷針(ESE)、放射性避雷針則基于不同原理優化防護效果,需根據場景選擇適用方案。消雷器:通過金屬針群產生的電暈放電,中和空氣中的雷云電荷,減少落雷概率。適用于易燃易爆場所(如油庫、氣站),避免引雷帶來的風險,但需持續供電維持電暈場,且保護范圍存在爭議,需配合單獨接地系統。提前放電避雷針(ESE):利用前列放電原理,在雷云臨近時提前激發上行先導,延長接閃時間窗口,擴大保護范圍(較傳統避雷針提升30%-50%)。適用于高層建筑、機場航站樓,需嚴格計算提前放電時間參數(Δt),確保與下行先導的有效截...
施工過程中需進行階段性檢測驗收,確保各工序符合設計要求。接地體敷設完畢后,應進行接地電阻測試,記錄測試數據并繪制接地系統平面圖。引下線焊接完成后,檢查焊接質量和防腐處理情況,填寫隱蔽工程驗收單。接閃器安裝完畢后,測量其高度、間距及與建筑物的絕緣距離,檢查等電位連接是否可靠。工程竣工后,施工單位應提供完整的竣工資料,包括設計圖紙、變更簽證、檢測報告、隱蔽工程記錄等,委托具有資質的防雷檢測機構進行整體性能檢測,檢測內容包括接地電阻、過渡電阻、接閃器保護范圍等,檢測合格后報當地氣象主管部門備案,確保防雷裝置投入使用前符合國家標準。特種防雷工程不斷創新技術,提升整體防雷效果。陜西防雷整改防雷工程生產廠...
橋梁(尤其是鋼結構橋梁)防雷需兼顧結構安全與導電性能。主橋體采用多點接地,利用橋墩基礎鋼筋作為自然接地體,每 20 米設置一處引下線(Φ16 熱鍍鋅圓鋼),與橋面防撞護欄焊接連通(焊接點間距≤15 米)。斜拉索橋梁的鋼索需做絕緣處理(外包絕緣層),并在兩端設置放電間隙(距離≤5mm),避免雷電流直接流經鋼索。橋頭堡、監控設備房需設置單獨避雷針,保護范圍覆蓋設備區域,接地網與橋梁主體接地體間隔≥3 米,防止地電位反擊。照明系統燈具外殼、金屬橋架需與橋梁接地系統連接,電源線采用鎧裝電纜,進出橋梁處做等電位跨接。施工時需檢測橋梁鋼結構的導電連續性,焊接部位做防腐處理(環氧富鋅底漆 + 聚氨酯面漆),...
引入第三方檢測是確保工程質量的重要環節,需在施工各階段有序推進。施工前,檢測機構參與圖紙會審,重點審核接地系統設計、接閃器保護范圍是否符合規范;基礎接地體敷設完畢后,進行隱蔽工程檢測,核查接地體材質、埋設深度、焊接質量,同步測量接地電阻并出具階段性檢測報告。主體施工階段,檢測引下線間距、等電位連接可靠性、接閃器安裝高度,對焊接工藝和防腐處理進行抽樣檢測(抽樣比例≥10%)。竣工檢測時,多方面檢測接地電阻、過渡電阻、SPD 安裝參數,繪制防雷裝置平面布置圖,對不符合項下達整改通知,施工單位整改后申請復檢。檢測機構需具備省級氣象主管部門頒發的資質證書,檢測人員持證上崗,檢測報告需加蓋 CMA 計量...
橋梁(尤其是鋼結構橋梁)防雷需兼顧結構安全與導電性能。主橋體采用多點接地,利用橋墩基礎鋼筋作為自然接地體,每 20 米設置一處引下線(Φ16 熱鍍鋅圓鋼),與橋面防撞護欄焊接連通(焊接點間距≤15 米)。斜拉索橋梁的鋼索需做絕緣處理(外包絕緣層),并在兩端設置放電間隙(距離≤5mm),避免雷電流直接流經鋼索。橋頭堡、監控設備房需設置單獨避雷針,保護范圍覆蓋設備區域,接地網與橋梁主體接地體間隔≥3 米,防止地電位反擊。照明系統燈具外殼、金屬橋架需與橋梁接地系統連接,電源線采用鎧裝電纜,進出橋梁處做等電位跨接。施工時需檢測橋梁鋼結構的導電連續性,焊接部位做防腐處理(環氧富鋅底漆 + 聚氨酯面漆),...