在一些對流體純凈度要求嚴苛的行業,如電子芯片制造、生物制藥,閥門內部清潔度至關重要。閥門在制造、運輸與安裝過程中,可能會殘留雜質,如金屬碎屑、灰塵等。清潔度檢測采用多種方法,先用高純度的清洗液對閥門內部進行0清洗,然后收集清洗液,通過精密的顆粒計數儀分析其中雜...
超聲波檢測是閥門無損探傷的常用技術。將超聲波探頭貼合在閥門表面,向閥門內部發射高頻超聲波。當超聲波遇到閥門內部的缺陷,如裂紋、氣孔等時,會產生反射、折射與散射現象。探頭接收這些返回的超聲波信號,并傳輸至分析儀器。儀器依據信號的特征,如反射波的強度、傳播時間等,...
在一些對介質泄漏要求極高的行業,如半導體制造、制藥行業的高純度氣體輸送系統,微量泄漏都可能造成嚴重影響。微量泄漏高精度檢測采用先進的檢測技術,如氦質譜檢漏儀。將閥門密封在特定的測試腔體內,充入氦氣作為示蹤氣體。氦質譜檢漏儀能夠檢測到極微量的氦氣泄漏,其檢測精度...
焊接件的表面粗糙度對其外觀質量、摩擦性能、密封性等都有影響。表面粗糙度檢測可采用多種方法,如比較樣塊法、觸針法和光切法等。比較樣塊法是將焊接件表面與已知表面粗糙度的樣塊進行對比,通過視覺和觸覺判斷焊接件的表面粗糙度等級,該方法簡單直觀,但精度相對較低。觸針法利...
滲透探傷主要用于檢測非多孔性固體材料焊接件的表面開口缺陷。檢測過程較為細致,先將含有色染料或熒光劑的滲透液均勻涂覆在焊接件表面,滲透液會在毛細管作用下滲入缺陷內部。經過一段時間的充分滲透后,用清洗劑去除焊接件表面多余的滲透液,再施加顯像劑。顯像劑能將缺陷中的滲...
超聲波檢測是閥門無損探傷的常用技術。將超聲波探頭貼合在閥門表面,向閥門內部發射高頻超聲波。當超聲波遇到閥門內部的缺陷,如裂紋、氣孔等時,會產生反射、折射與散射現象。探頭接收這些返回的超聲波信號,并傳輸至分析儀器。儀器依據信號的特征,如反射波的強度、傳播時間等,...
熱膨脹系數反映了金屬材料在溫度變化時尺寸的變化特性。熱膨脹系數檢測對于在溫度變化環境下工作的金屬材料和結構至關重要。檢測方法通常采用熱機械分析儀或光學干涉法等。熱機械分析儀通過測量材料在加熱或冷卻過程中的長度變化,計算出熱膨脹系數。光學干涉法則利用光的干涉原理...
具備智能診斷功能的閥門,其診斷系統準確性直接關系到設備維護效率。檢測時,在閥門模擬運行系統中,人為設置多種常見故障,如閥芯卡滯、密封件損壞、傳感器故障等。智能診斷系統實時采集閥門運行數據,利用算法分析判斷故障。對比系統診斷結果與實際故障,評估準確性。例如,某智...
在核能相關設施中,如核電站反應堆堆芯結構材料、核廢料儲存容器等,金屬材料長期處于輻照環境中。輻照會使金屬材料的原子結構發生變化,導致材料性能劣化。金屬材料在輻照環境下的性能檢測通過模擬核輻射場景,利用粒子加速器或放射性同位素源產生的中子、γ 射線等對金屬材料樣...
自動化生產線中,部分閥門需具備快速切換響應性能。快速切換響應性能檢測通過自動化控制系統向閥門發送快速切換指令,如從全開迅速切換到全關或反之。利用高速數據采集設備記錄閥門從接收指令到完成切換動作的時間,測量切換過程中的流量波動、壓力變化。評估閥門的快速切換響應速...
二次離子質譜(SIMS)能夠對金屬材料進行深度剖析,精確分析材料表面及內部不同深度處的元素組成和同位素分布。該技術通過用高能離子束轟擊金屬樣品表面,使表面原子濺射出來并離子化,然后通過質譜儀對二次離子進行分析。在半導體制造中,對于金屬互連材料,SIMS 可用于...
在石油化工、能源等行業,部分金屬設備需長期處于高溫高壓且含有腐蝕性介質的環境中,極易發生應力腐蝕開裂(SCC)現象。應力腐蝕開裂檢測模擬這類極端工況,將金屬材料樣品置于高溫高壓反應釜內,釜中充入特定腐蝕性介質,同時對樣品施加一定的拉伸應力。通過電化學監測、無損...
自動化生產線中,部分閥門需具備快速切換響應性能。快速切換響應性能檢測通過自動化控制系統向閥門發送快速切換指令,如從全開迅速切換到全關或反之。利用高速數據采集設備記錄閥門從接收指令到完成切換動作的時間,測量切換過程中的流量波動、壓力變化。評估閥門的快速切換響應速...
在一些新興的能源轉換和存儲系統中,如液態金屬電池、液態金屬冷卻的核反應堆等,金屬材料與液態金屬密切接觸,面臨獨特的腐蝕問題。腐蝕電化學檢測通過構建電化學測試體系,將金屬材料作為工作電極,置于模擬的液態金屬環境中。利用電化學工作站測量開路電位、極化曲線、交流阻抗...
隨著微機電系統(MEMS)等微小尺寸器件的發展,對金屬材料在微尺度下的力學性能評估需求日益增加。微尺度拉伸試驗專門用于檢測微小樣品的力學性能。試驗設備采用高精度的微力傳感器和位移測量裝置,能夠精確控制和測量微小樣品在拉伸過程中的力和位移變化。與宏觀拉伸試驗不同...
閥門檢測作為保障工業系統安全穩定運行的關鍵環節,至關重要。檢測前,依據行業標準與閥門類型,細致挑選適配的檢測工具與儀器,如高精度壓力計、專業泄漏檢測設備等,并對閥門進行各個方面清潔,確保無雜質干擾檢測。隨后,將閥門妥善安裝于模擬實際工況的檢測裝置中,精細調控壓...
電子探針微區分析(EPMA)可對金屬材料進行微區成分和結構分析。它利用聚焦的高能電子束轟擊金屬樣品表面,激發樣品發出特征 X 射線、二次電子等信號。通過檢測特征 X 射線的波長和強度,能精確分析微區內元素的種類和含量,其空間分辨率可達微米級。同時,結合二次電子...
具備智能診斷功能的閥門,其診斷系統準確性直接關系到設備維護效率。檢測時,在閥門模擬運行系統中,人為設置多種常見故障,如閥芯卡滯、密封件損壞、傳感器故障等。智能診斷系統實時采集閥門運行數據,利用算法分析判斷故障。對比系統診斷結果與實際故障,評估準確性。例如,某智...
X 射線熒光光譜(XRF)技術為金屬材料成分分析提供了快速、便捷且無損的檢測手段。其原理是利用 X 射線激發金屬材料中的原子,使其產生特征熒光 X 射線,通過檢測熒光 X 射線的能量和強度,就能準確確定材料中各種元素的種類和含量。在廢舊金屬回收領域,XRF 檢...
氣壓試驗是檢測焊接件密封性的常用方法之一。在試驗時,將焊接件封閉后充入一定壓力的氣體,通常為壓縮空氣,然后檢查焊接件表面是否有氣體泄漏。檢測人員可使用肥皂水、發泡劑等涂抹在焊接件的焊縫及密封部位,若有泄漏,會產生氣泡。對于一些大型焊接件,如儲氣罐,氣壓試驗還可...
金屬材料在受力和變形過程中,其內部的磁疇結構會發生變化,導致表面的磁場分布改變,這種現象稱為磁記憶效應。磁記憶檢測利用這一原理,通過檢測金屬材料表面的磁場強度和梯度變化,來判斷材料內部的應力集中區域和缺陷位置。該方法無需對材料進行預處理,檢測速度快,可對大型金...
焊接過程中由于不均勻的加熱和冷卻,會在焊接件內部產生殘余應力。殘余應力的存在可能會導致焊接件在使用過程中發生變形、開裂等問題,影響其使用壽命。殘余應力檢測方法主要有 X 射線衍射法、盲孔法等。X 射線衍射法是利用 X 射線與晶體的相互作用,通過測量衍射峰的位移...
金相組織分析是研究金屬材料內部微觀結構的基礎且重要的方法。通過對金屬材料進行取樣、鑲嵌、研磨、拋光以及腐蝕等一系列處理后,利用金相顯微鏡觀察其微觀組織形態。金相組織包含了晶粒大小、形狀、分布,以及各種相的種類和比例等關鍵信息。不同的金相組織直接決定了金屬材料的...
焊接件的尺寸精度直接影響到其在裝配過程中的準確性以及與其他部件的配合效果。在制造業中,如汽車零部件的焊接件,尺寸精度要求極高。檢測人員會依據焊接件的設計圖紙,使用各種精密量具進行尺寸測量。對于直線尺寸,常用卡尺、千分尺等進行測量,確保尺寸偏差在規定的公差范圍內...
閥門在工作時可能因流體流動、機械振動等因素產生振動。振動響應測試在模擬實際工況的振動臺上進行,通過施加不同頻率和幅值的振動激勵,監測閥門的振動響應特性。利用加速度傳感器測量閥門各部位的振動加速度,分析振動頻譜。過度振動可能導致閥門部件松動、密封失效等問題。通過...
脈沖焊接能有效控制焊接熱輸入,提高焊接質量,其質量評估包括多方面。外觀檢測時,觀察焊縫表面的魚鱗紋是否均勻、細密,有無氣孔、裂紋等缺陷。在鋁合金脈沖焊接件檢測中,良好的焊縫外觀有助于提高鋁合金的耐腐蝕性。內部質量檢測采用超聲相控陣技術,可精確檢測焊縫內部的缺陷...
在一些新興的能源轉換和存儲系統中,如液態金屬電池、液態金屬冷卻的核反應堆等,金屬材料與液態金屬密切接觸,面臨獨特的腐蝕問題。腐蝕電化學檢測通過構建電化學測試體系,將金屬材料作為工作電極,置于模擬的液態金屬環境中。利用電化學工作站測量開路電位、極化曲線、交流阻抗...
環境掃描電子顯微鏡(ESEM)允許在樣品室中保持一定的氣體環境,對金屬材料進行原位觀察。在金屬材料的腐蝕研究中,可將金屬樣品置于 ESEM 的樣品室內,通入含有腐蝕性介質的氣體,實時觀察金屬在腐蝕過程中的微觀結構變化,如腐蝕坑的形成、擴展以及腐蝕產物的生長等。...
在熱循環載荷作用下,金屬材料內部會產生熱疲勞裂紋,隨著循環次數增加,裂紋逐漸擴展,可能導致材料失效。熱疲勞裂紋擴展速率檢測通過模擬實際熱循環工況,對金屬材料樣品施加周期性的溫度變化,同時利用無損檢測技術,如數字圖像相關法、掃描電子顯微鏡原位觀察等,實時監測裂紋...
金屬材料在加工過程中,如鍛造、軋制、焊接等,會在表面產生殘余應力。殘余應力的存在可能導致材料變形、開裂,影響產品的質量和使用壽命。表面殘余應力 X 射線檢測利用 X 射線與金屬晶體的相互作用原理,當 X 射線照射到金屬材料表面時,會發生衍射現象,通過測量衍射峰...