用途使得用戶體驗(yàn)從5-10分鐘減為1-2條短信、Web交互、Wap交互,**改善用戶體驗(yàn)感覺。幫助企業(yè)統(tǒng)計(jì)和了解客戶需要,實(shí)現(xiàn)精細(xì)化業(yè)務(wù)管理。技術(shù)層面上支持多層次企業(yè)知識(shí)建模;支持細(xì)粒度企業(yè)知識(shí)管理;支持多視角企業(yè)知識(shí)分析;支持對(duì)客戶咨詢自然語言的多層次語義分析;支持跨業(yè)務(wù)的語義檢索;支持企業(yè)信息和知識(shí)融合。業(yè)務(wù)層面支持企業(yè)面向客戶的知識(shí)管理;支持人工話務(wù)和文字話務(wù)的有效結(jié)合,成倍的提高人工話務(wù)效率,大幅度降低企業(yè)客服成本;精細(xì)化業(yè)務(wù)管理:支持精細(xì)化統(tǒng)計(jì)分析,支持近60個(gè)統(tǒng)計(jì)指標(biāo)的數(shù)據(jù)分析,支持熱點(diǎn)業(yè)務(wù)精細(xì)分析;對(duì)企業(yè)的運(yùn)行支持度很低。長(zhǎng)寧區(qū)本地大模型智能客服圖片2. 模型透明性與可信度挑戰(zhàn)“...
2. 模型透明性與可信度挑戰(zhàn)“黑箱”特性:大模型的算法復(fù)雜性與可解釋性不足降低了高風(fēng)險(xiǎn)決策的透明度,可能引發(fā)監(jiān)管機(jī)構(gòu)與投資者的信任危機(jī)(Maple et al., 2022)。具體表現(xiàn)為:○ 決策不可控:訓(xùn)練數(shù)據(jù)中的錯(cuò)誤或誤導(dǎo)性信息可能生成低質(zhì)量結(jié)果,誤導(dǎo)金融決策(蘇瑞淇,2024);○ 解釋性缺失:模型內(nèi)部邏輯不透明,難以及時(shí)追溯風(fēng)險(xiǎn)源頭(羅世杰,2024);○ 隱性偏見:算法隱含的主觀價(jià)值偏好可能導(dǎo)致輸出結(jié)果的歧視性偏差(段偉文,2024)。出版行業(yè):處理到貨查詢、缺貨賠償?shù)仁聞?wù),在復(fù)雜場(chǎng)景轉(zhuǎn)接人工 [3]。楊浦區(qū)附近大模型智能客服廠家直銷用途使得用戶體驗(yàn)從5-10分鐘減為1-2條短信、W...
大模型起源于語言模型。上世紀(jì)末,IBM的對(duì)齊模型 [1]開創(chuàng)了統(tǒng)計(jì)語言建模的先河。2001年,在3億個(gè)詞語上訓(xùn)練的基于平滑的n-gram模型達(dá)到了當(dāng)時(shí)的先進(jìn)水平 [2]。此后,隨著互聯(lián)網(wǎng)的普及,研究人員開始構(gòu)建大規(guī)模的網(wǎng)絡(luò)語料庫(kù),用于訓(xùn)練統(tǒng)計(jì)語言模型。到了2009年,統(tǒng)計(jì)語言模型已經(jīng)作為主要方法被應(yīng)用在大多數(shù)自然語言處理任務(wù)中 [3]。2012年左右,神經(jīng)網(wǎng)絡(luò)開始被應(yīng)用于語言建模。2016年,谷歌(Google)將其翻譯服務(wù)轉(zhuǎn)換為神經(jīng)機(jī)器翻譯,其模型為深度LSTM網(wǎng)絡(luò)。2017年,谷歌在NeurIPS會(huì)議上提出了Transformer模型架構(gòu) [4],這是現(xiàn)代人工智能大模型的基石。金融領(lǐng)域:中...
以一家快遞公司客服熱線為例,AI客服先給出了兩個(gè)選項(xiàng),當(dāng)記者想直接轉(zhuǎn)人工時(shí),AI客服仍是“自說自話”,重復(fù)著固定話術(shù)。然而,這還*是開始,接下來,AI客服共細(xì)分了4個(gè)二級(jí)菜單。在記者回答完***一個(gè)問題,成功轉(zhuǎn)接到人工客服時(shí),時(shí)間已經(jīng)過去了2分25秒。成功轉(zhuǎn)人工后記者再次描述了訴求,卻發(fā)現(xiàn)此前AI客服設(shè)置的分類選項(xiàng)未能實(shí)現(xiàn)精細(xì)導(dǎo)流,客服表示需轉(zhuǎn)接至負(fù)責(zé)該業(yè)務(wù)的客服處理,**終記者用時(shí)3分鐘才轉(zhuǎn)接到正確的人工客服。 [4]配以話務(wù)員補(bǔ)發(fā)系統(tǒng)、話務(wù)質(zhì)檢系統(tǒng)、話務(wù)員小休管理模塊、短信網(wǎng)關(guān)接口、惡意攻擊檢測(cè)系統(tǒng)等。黃浦區(qū)辦公用大模型智能客服銷售廠基礎(chǔ)科學(xué)大模型的快速發(fā)展開始于2020年。該年,Alph...
以一家快遞公司客服熱線為例,AI客服先給出了兩個(gè)選項(xiàng),當(dāng)記者想直接轉(zhuǎn)人工時(shí),AI客服仍是“自說自話”,重復(fù)著固定話術(shù)。然而,這還*是開始,接下來,AI客服共細(xì)分了4個(gè)二級(jí)菜單。在記者回答完***一個(gè)問題,成功轉(zhuǎn)接到人工客服時(shí),時(shí)間已經(jīng)過去了2分25秒。成功轉(zhuǎn)人工后記者再次描述了訴求,卻發(fā)現(xiàn)此前AI客服設(shè)置的分類選項(xiàng)未能實(shí)現(xiàn)精細(xì)導(dǎo)流,客服表示需轉(zhuǎn)接至負(fù)責(zé)該業(yè)務(wù)的客服處理,**終記者用時(shí)3分鐘才轉(zhuǎn)接到正確的人工客服。 [4]知識(shí)面向客戶的知識(shí)管理,使得客戶可以直接有效訪問到客戶化知識(shí)庫(kù)。同時(shí)也面向企業(yè)內(nèi)部進(jìn)行知識(shí)管理。徐匯區(qū)評(píng)價(jià)大模型智能客服廠家直銷多模態(tài)大模型多模態(tài)大模型則能夠同時(shí)處理和理解多種...
人工智能大模型通常是指由人工神經(jīng)網(wǎng)絡(luò)構(gòu)建的一類具有大量參數(shù)的人工智能模型。大模型通常通過自監(jiān)督學(xué)習(xí)或半監(jiān)督學(xué)習(xí)在大量數(shù)據(jù)上進(jìn)行訓(xùn)練。**初,大模型主要指大語言模型(Large Language Models, LLM)。隨著技術(shù)的發(fā)展,逐漸擴(kuò)展出了視覺大模型、多模態(tài)大模型以及基礎(chǔ)科學(xué)大模型等概念。大模型是一個(gè)新興概念,截止目前并沒有*****的定義。因此,大模型所需要具有的**小參數(shù)規(guī)模也沒有一個(gè)嚴(yán)格的標(biāo)準(zhǔn)。目前,大模型通常是指參數(shù)規(guī)模達(dá)到百億、千億甚至萬億的模型。此外,人們也習(xí)慣性的將經(jīng)過大規(guī)模數(shù)據(jù)預(yù)訓(xùn)練(***多于傳統(tǒng)預(yù)訓(xùn)練模型所需要的訓(xùn)練數(shù)據(jù))的數(shù)十億參數(shù)級(jí)別的模型也可以稱之為大模型,如...
比較大壓縮率為5倍,采用GSM壓縮方式,錄音時(shí)間比無壓縮方式的錄音時(shí)間長(zhǎng)五倍。例如,當(dāng)系統(tǒng)安裝了一個(gè) 20G 硬盤時(shí),錄音容量約 3400 小時(shí)。 可設(shè)定工作時(shí)段:為增加系統(tǒng)使用彈性,除選擇24小時(shí)錄音外,系統(tǒng)可在三個(gè)工作時(shí)段范圍工作,在非工作時(shí)段系統(tǒng)停止錄音。 五、 自動(dòng)收發(fā)傳真功能 自動(dòng)傳真:客戶可以通過電話按鍵選擇某一特定的傳真服務(wù),傳真服務(wù)器會(huì)自動(dòng)根據(jù)客戶的輸入動(dòng)態(tài)生成傳真文件(包括根據(jù)數(shù)據(jù)庫(kù)資料動(dòng)態(tài)生成的報(bào)表),并自動(dòng)發(fā)送傳真給客戶,而不需要人工的干預(yù)。如此無效溝通,AI技術(shù)是用上了,客戶服務(wù)卻全然沒有了。奉賢區(qū)辦公用大模型智能客服銷售廠AI客服是指一種利用人工智能技術(shù),為客戶提...
答案推薦引擎讓智能機(jī)器人能夠精細(xì)匹配答案;智能過濾引擎賦予機(jī)器人智能篩選答案的能力,屏蔽無效答案,將***的信息傳遞給用戶;智能反問引擎使機(jī)器人具備了多輪對(duì)話能力,持續(xù)地與用戶保持互動(dòng);場(chǎng)景識(shí)別引擎,通過上下文語境判斷,讓人機(jī)交互更加自然;系統(tǒng)的關(guān)鍵技術(shù)涉及三個(gè)主要方面:基于自然語言理解的語義檢索技術(shù)、多渠道知識(shí)服務(wù)技術(shù)、大規(guī)模知識(shí)庫(kù)建構(gòu)技術(shù)。在自然語言理解語義檢索技術(shù)方面,我們讓公眾以**自然的方式表達(dá)自己的信息或知識(shí)需求,并能夠獲得其**想要的精細(xì)信息。我們的系統(tǒng)首先對(duì)用戶的查詢進(jìn)行自然語言分析,這種分析在三個(gè)層次上進(jìn)行:語義文法分析、代詞類的短語文法分析、特征詞檢索。同時(shí),對(duì)上述用戶的自...
客戶可按自己的意愿選擇自動(dòng)語音播報(bào)及人工座席應(yīng)答;對(duì)于新客戶可以選擇自動(dòng)語音播報(bào),了解服務(wù)中心的業(yè)務(wù)情況、如需人工幫助可轉(zhuǎn)入相關(guān)人工座席。二、智能話務(wù)分配(ACD)自動(dòng)呼叫分配系統(tǒng)(ACD)是客戶服務(wù)中心有別于一般的熱線電話系統(tǒng)的重要部分,在一個(gè)客戶服務(wù)中心中,ACD成批的處理來話呼叫,并將這些來話按話務(wù)量平均分配,也可按 指定的轉(zhuǎn)接方式 傳送給具有相關(guān)職責(zé)或技能的各個(gè)業(yè)務(wù)代理。ACD提高了系統(tǒng)的效率,減少了客戶服務(wù)中心系統(tǒng)的開銷,并使公司能更好的利用**。語音質(zhì)檢系統(tǒng)自動(dòng)識(shí)別服務(wù)缺陷,質(zhì)檢覆蓋率從15%提升至100%。嘉定區(qū)安裝大模型智能客服哪里買智能客服系統(tǒng)是在大規(guī)模知識(shí)處理基礎(chǔ)上發(fā)展起來...
以一家快遞公司客服熱線為例,AI客服先給出了兩個(gè)選項(xiàng),當(dāng)記者想直接轉(zhuǎn)人工時(shí),AI客服仍是“自說自話”,重復(fù)著固定話術(shù)。然而,這還*是開始,接下來,AI客服共細(xì)分了4個(gè)二級(jí)菜單。在記者回答完***一個(gè)問題,成功轉(zhuǎn)接到人工客服時(shí),時(shí)間已經(jīng)過去了2分25秒。成功轉(zhuǎn)人工后記者再次描述了訴求,卻發(fā)現(xiàn)此前AI客服設(shè)置的分類選項(xiàng)未能實(shí)現(xiàn)精細(xì)導(dǎo)流,客服表示需轉(zhuǎn)接至負(fù)責(zé)該業(yè)務(wù)的客服處理,**終記者用時(shí)3分鐘才轉(zhuǎn)接到正確的人工客服。 [4]根據(jù)縮略語識(shí)別算法,自動(dòng)識(shí)別縮略語所對(duì)應(yīng)的正式稱呼,然后從知識(shí)庫(kù)中搜索到正確的知識(shí)內(nèi)容。靜安區(qū)評(píng)價(jià)大模型智能客服圖片智能體03:**模型上新!讓自然流暢的語音交互成為可能在智能...
客戶可按自己的意愿選擇自動(dòng)語音播報(bào)及人工座席應(yīng)答;對(duì)于新客戶可以選擇自動(dòng)語音播報(bào),了解服務(wù)中心的業(yè)務(wù)情況、如需人工幫助可轉(zhuǎn)入相關(guān)人工座席。二、智能話務(wù)分配(ACD)自動(dòng)呼叫分配系統(tǒng)(ACD)是客戶服務(wù)中心有別于一般的熱線電話系統(tǒng)的重要部分,在一個(gè)客戶服務(wù)中心中,ACD成批的處理來話呼叫,并將這些來話按話務(wù)量平均分配,也可按 指定的轉(zhuǎn)接方式 傳送給具有相關(guān)職責(zé)或技能的各個(gè)業(yè)務(wù)代理。ACD提高了系統(tǒng)的效率,減少了客戶服務(wù)中心系統(tǒng)的開銷,并使公司能更好的利用**。截至2025年,智齒AIAgent系統(tǒng)實(shí)現(xiàn)多渠道知識(shí)庫(kù)整合,維護(hù)成本降低70%。崇明區(qū)辦公用大模型智能客服銷售廠該系統(tǒng)是一種點(diǎn)式或條式的知...
如圖1。在支持多渠道、多用戶的知識(shí)服務(wù)技術(shù)方面,根據(jù)多年的技術(shù)推廣經(jīng)驗(yàn)以及對(duì)多個(gè)行業(yè)的需求分析,我們?cè)O(shè)計(jì)一種可支撐不同用戶、不同渠道的統(tǒng)一的知識(shí)服務(wù)模式。該模式不僅融合了人工智能的研究成果和我們的**技術(shù),也融合了**、話務(wù)員、知識(shí)管理員等人工因素,是一種人機(jī)結(jié)合的服務(wù)模式。該模式可以統(tǒng)一的方式服務(wù)不同的用戶,應(yīng)用于不同的渠道(可支持短信、MSN、QQ、飛信、BBS等渠道無縫接入)。因此,**降低了企業(yè)客服成本。幫助企業(yè)統(tǒng)計(jì)和了解客戶需要,實(shí)現(xiàn)精細(xì)化業(yè)務(wù)管理。嘉定區(qū)安裝大模型智能客服供應(yīng)基礎(chǔ)科學(xué)研究大模型正成為加速科學(xué)發(fā)現(xiàn)的新范式。生物醫(yī)藥領(lǐng)域通過蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)模型AlphaFold2突破傳統(tǒng)...
如圖1。在支持多渠道、多用戶的知識(shí)服務(wù)技術(shù)方面,根據(jù)多年的技術(shù)推廣經(jīng)驗(yàn)以及對(duì)多個(gè)行業(yè)的需求分析,我們?cè)O(shè)計(jì)一種可支撐不同用戶、不同渠道的統(tǒng)一的知識(shí)服務(wù)模式。該模式不僅融合了人工智能的研究成果和我們的**技術(shù),也融合了**、話務(wù)員、知識(shí)管理員等人工因素,是一種人機(jī)結(jié)合的服務(wù)模式。該模式可以統(tǒng)一的方式服務(wù)不同的用戶,應(yīng)用于不同的渠道(可支持短信、MSN、QQ、飛信、BBS等渠道無縫接入)。因此,**降低了企業(yè)客服成本。知識(shí)庫(kù)更新機(jī)制引入自動(dòng)爬取技術(shù),信息實(shí)時(shí)性提升。長(zhǎng)寧區(qū)附近大模型智能客服銷售2025年4月,張洪忠表示研究顯示,目前國(guó)內(nèi)主流媒體已經(jīng)將大模型技術(shù)應(yīng)用在內(nèi)容生產(chǎn)的全鏈條之中,技術(shù)的采納程...
視覺大模型視覺大模型則主要應(yīng)用于計(jì)算機(jī)視覺領(lǐng)域,負(fù)責(zé)處理和分析圖像或視頻數(shù)據(jù)。通過對(duì)大量視覺數(shù)據(jù)的訓(xùn)練,視覺大模型能夠完成圖像分類、目標(biāo)檢測(cè)、圖像生成等任務(wù)。隨著Transformer架構(gòu)的引入,模型如Vision Transformer(ViT)取得了***的成果。早期的視覺模型多基于卷積神經(jīng)網(wǎng)絡(luò)(CNN),如ResNet等,但隨著技術(shù)的進(jìn)步,基于自注意力機(jī)制的視覺(大)模型逐漸成為主流。視覺大模型被廣泛應(yīng)用于自動(dòng)駕駛、安防監(jiān)控、人臉識(shí)別、醫(yī)療影像分析等領(lǐng)域。5G技術(shù)賦能下,智能客服咨詢響應(yīng)延遲降至0.3秒。黃浦區(qū)國(guó)內(nèi)大模型智能客服廠家供應(yīng)多模態(tài)大模型多模態(tài)大模型則能夠同時(shí)處理和理解多種類型...
客戶服務(wù)系統(tǒng)是圍繞服務(wù)展開的,它的**理念是客戶滿意度和客戶忠誠(chéng)度,是通過取得顧客滿意和忠誠(chéng)來促進(jìn)相互有利的交換,**終實(shí)現(xiàn)營(yíng)銷績(jī)效的改進(jìn)。同時(shí)通過質(zhì)量服務(wù)塑造和強(qiáng)化公司良好的公共形象,創(chuàng)造有利的輿論環(huán)境,爭(zhēng)取有利的**政策,**終實(shí)現(xiàn)公司的長(zhǎng)期發(fā)展。一、自動(dòng)語音應(yīng)答(IVR)撥入客戶服務(wù)系統(tǒng)的客戶,首先由自動(dòng)語音應(yīng)答導(dǎo)航:“您好,歡迎使用……”,客戶聽到的是專業(yè)播音員的錄音,語音清晰、親切。這些大量重復(fù)性的信息可引導(dǎo)到自動(dòng)語音播報(bào)系統(tǒng),這樣就可使客服人員從大量的重復(fù)性勞動(dòng)中解放出來,從而可以減少人工座席數(shù)量,也可避免情緒不佳等因素對(duì)客戶的影響,為客戶提供更專業(yè)、周到的服務(wù),提升企業(yè)形象。與熱...
2025年1月,DeepSeek發(fā)布671億參數(shù)的開源模型DeepSeek R1 [5]。DeepSeek R1的性能與OpenAI 的GPT-o1相當(dāng),但成本遠(yuǎn)遠(yuǎn)低于閉源的o1模型,震撼了全球科技界。自2020年以來,大模型同時(shí)開始拓展至其他模態(tài)。2020年,谷歌公司提出Vision Transformer(ViT) [6]模型,將Transformer架構(gòu)引入視覺領(lǐng)域。2021年,OpenAI于發(fā)布了CLIP模型 [7],將圖像和文本進(jìn)行聯(lián)合訓(xùn)練,實(shí)現(xiàn)了大模型中跨模態(tài)的信息對(duì)齊。2024年,OpenAI發(fā)布Sora,支持直接從文字提示詞生成視頻,引起社會(huì)***關(guān)注。知識(shí)管理系統(tǒng)是基于我們十...
下表具體給出了該系統(tǒng)與其它傳統(tǒng)系統(tǒng)的重要區(qū)別。多層次語言分析從語義文法層、詞模層、關(guān)鍵詞層三個(gè)層面自動(dòng)理解客戶咨詢。通常*單層分析模糊推理針對(duì)客戶的模糊問題,采用模糊分析技術(shù),識(shí)別客戶的意圖,從而準(zhǔn)確地搜索客戶所需的知識(shí)內(nèi)容遇到模糊咨詢,性能驟然降低縮略語識(shí)別根據(jù)縮略語識(shí)別算法,自動(dòng)識(shí)別縮略語所對(duì)應(yīng)的正式稱呼,然后從知識(shí)庫(kù)中搜索到正確的知識(shí)內(nèi)容。沒有現(xiàn)成的方法支持細(xì)粒度知識(shí)管理,*對(duì)“文檔”式或“表單”式數(shù)據(jù)管理有效。電商場(chǎng)景:雙11期間實(shí)現(xiàn)3秒極速響應(yīng),日均分流80%基礎(chǔ)咨詢量。徐匯區(qū)提供大模型智能客服哪里買AI客服是指一種利用人工智能技術(shù),為客戶提供交互式服務(wù)的智能客服系統(tǒng)。這種系統(tǒng)通過自...
答案推薦引擎讓智能機(jī)器人能夠精細(xì)匹配答案;智能過濾引擎賦予機(jī)器人智能篩選答案的能力,屏蔽無效答案,將***的信息傳遞給用戶;智能反問引擎使機(jī)器人具備了多輪對(duì)話能力,持續(xù)地與用戶保持互動(dòng);場(chǎng)景識(shí)別引擎,通過上下文語境判斷,讓人機(jī)交互更加自然;系統(tǒng)的關(guān)鍵技術(shù)涉及三個(gè)主要方面:基于自然語言理解的語義檢索技術(shù)、多渠道知識(shí)服務(wù)技術(shù)、大規(guī)模知識(shí)庫(kù)建構(gòu)技術(shù)。在自然語言理解語義檢索技術(shù)方面,我們讓公眾以**自然的方式表達(dá)自己的信息或知識(shí)需求,并能夠獲得其**想要的精細(xì)信息。我們的系統(tǒng)首先對(duì)用戶的查詢進(jìn)行自然語言分析,這種分析在三個(gè)層次上進(jìn)行:語義文法分析、代詞類的短語文法分析、特征詞檢索。同時(shí),對(duì)上述用戶的自...
客戶服務(wù)系統(tǒng)是圍繞服務(wù)展開的,它的**理念是客戶滿意度和客戶忠誠(chéng)度,是通過取得顧客滿意和忠誠(chéng)來促進(jìn)相互有利的交換,**終實(shí)現(xiàn)營(yíng)銷績(jī)效的改進(jìn)。同時(shí)通過質(zhì)量服務(wù)塑造和強(qiáng)化公司良好的公共形象,創(chuàng)造有利的輿論環(huán)境,爭(zhēng)取有利的**政策,**終實(shí)現(xiàn)公司的長(zhǎng)期發(fā)展。一、自動(dòng)語音應(yīng)答(IVR)撥入客戶服務(wù)系統(tǒng)的客戶,首先由自動(dòng)語音應(yīng)答導(dǎo)航:“您好,歡迎使用……”,客戶聽到的是專業(yè)播音員的錄音,語音清晰、親切。這些大量重復(fù)性的信息可引導(dǎo)到自動(dòng)語音播報(bào)系統(tǒng),這樣就可使客服人員從大量的重復(fù)性勞動(dòng)中解放出來,從而可以減少人工座席數(shù)量,也可避免情緒不佳等因素對(duì)客戶的影響,為客戶提供更專業(yè)、周到的服務(wù),提升企業(yè)形象。與熱...
智能客服系統(tǒng)是在大規(guī)模知識(shí)處理基礎(chǔ)上發(fā)展起來的一項(xiàng)面向行業(yè)應(yīng)用的,適用大規(guī)模知識(shí)處理、自然語言理解、知識(shí)管理、自動(dòng)**系統(tǒng)、推理等等技術(shù)行業(yè),智能客服不僅為企業(yè)提供了細(xì)粒度知識(shí)管理技術(shù),還為企業(yè)與海量用戶之間的溝通建立了一種基于自然語言的快捷有效的技術(shù)手段;同時(shí)還能夠?yàn)槠髽I(yè)提供精細(xì)化管理所需的統(tǒng)計(jì)分析信息。知識(shí)管理系統(tǒng)是基于我們十余年面向客戶服務(wù)的大型知識(shí)庫(kù)建立方法的經(jīng)驗(yàn)而形成的精細(xì)化結(jié)構(gòu)知識(shí)管理工具。系統(tǒng)內(nèi)設(shè)立一套通用化的知識(shí)管理建模方案,該方案可以迅速地幫助大型企業(yè)對(duì)龐雜的知識(shí)內(nèi)容進(jìn)行面向客戶化的知識(shí)管理。而該套方案是一般知識(shí)管理系統(tǒng)工具(如MS Sharepoint和IBM Lotus)...
用途使得用戶體驗(yàn)從5-10分鐘減為1-2條短信、Web交互、Wap交互,**改善用戶體驗(yàn)感覺。幫助企業(yè)統(tǒng)計(jì)和了解客戶需要,實(shí)現(xiàn)精細(xì)化業(yè)務(wù)管理。技術(shù)層面上支持多層次企業(yè)知識(shí)建模;支持細(xì)粒度企業(yè)知識(shí)管理;支持多視角企業(yè)知識(shí)分析;支持對(duì)客戶咨詢自然語言的多層次語義分析;支持跨業(yè)務(wù)的語義檢索;支持企業(yè)信息和知識(shí)融合。業(yè)務(wù)層面支持企業(yè)面向客戶的知識(shí)管理;支持人工話務(wù)和文字話務(wù)的有效結(jié)合,成倍的提高人工話務(wù)效率,大幅度降低企業(yè)客服成本;精細(xì)化業(yè)務(wù)管理:支持精細(xì)化統(tǒng)計(jì)分析,支持近60個(gè)統(tǒng)計(jì)指標(biāo)的數(shù)據(jù)分析,支持熱點(diǎn)業(yè)務(wù)精細(xì)分析;在客戶的統(tǒng)計(jì)信息、熱點(diǎn)業(yè)務(wù)統(tǒng)計(jì)分析、VIP統(tǒng)計(jì)信息等可以在極短的時(shí)間內(nèi)獲得。寶山區(qū)...
2018年,谷歌提出BERT預(yù)訓(xùn)練模型,其迅速成為自然語言處理領(lǐng)域及其他眾多領(lǐng)域的主流模型。BERT采用了*包含編碼器的Transformer架構(gòu)。同年,OpenAI發(fā)布了基于Transformer解碼器架構(gòu)的GPT-1。04:52ChatGPT為啥這么機(jī)智?2019和2020年,OpenAI繼續(xù)推出GPT-2、GPT-3系列,引起領(lǐng)域內(nèi)***關(guān)注。2022年,OpenAI推出面向消費(fèi)者的ChatGPT,引發(fā)公眾和媒體熱議。2023年,GPT-4問世,并因其***的性能和多模態(tài)能力受到學(xué)界、業(yè)界和社會(huì)的高度關(guān)注。2024年,OpenAI發(fā)布了推理模型GPT-o1,它會(huì)在回應(yīng)指令前生成一長(zhǎng)串的思...
該系統(tǒng)是一種點(diǎn)式或條式的知識(shí)管理系統(tǒng),因此是一種細(xì)粒度的管理工具。這中細(xì)粒度的知識(shí)管理工具,使得大型企業(yè)更有效,更能從知識(shí)的運(yùn)行中實(shí)時(shí)地掌握企業(yè)的運(yùn)行狀態(tài),從而更有效地進(jìn)行科學(xué)決策。例如,在客戶的統(tǒng)計(jì)信息、熱點(diǎn)業(yè)務(wù)統(tǒng)計(jì)分析、VIP統(tǒng)計(jì)信息等可以在極短的時(shí)間內(nèi)獲得。這是一般知識(shí)管理工具所不支持的。下表具體給出了該系統(tǒng)與其它主要知識(shí)管理工具的重要區(qū)別。具有通用化的知識(shí)管理建模方案,可以迅速地幫助大型企業(yè)對(duì)龐雜的知識(shí)內(nèi)容進(jìn)行面向客戶化的知識(shí)管理。沒有內(nèi)置的知識(shí)管理方案,需要企業(yè)從頭設(shè)計(jì)。針對(duì)客戶的模糊問題,采用模糊分析技術(shù),識(shí)別客戶的意圖,從而準(zhǔn)確地搜索客戶所需的知識(shí)內(nèi)容。奉賢區(qū)附近大模型智能客服現(xiàn)...
AI客服無法準(zhǔn)確理解問題,難以轉(zhuǎn)接到人工客服等情形,均涉嫌侵犯消費(fèi)者的知情權(quán)和選擇權(quán)。一些商家不能為了節(jié)省成本,利用AI客服來敷衍應(yīng)付消費(fèi)者。當(dāng)前,AI客服的發(fā)展應(yīng)用是趨勢(shì)所在。但是,不管人工智能多么發(fā)達(dá),都不能忽視人**本真的情感、**真實(shí)的需求。 [3](新華網(wǎng) 評(píng))大家接到的*擾電話多為AI客服上陣,它們自說自話、不知疲倦,令人不堪其擾又無可奈何。商家營(yíng)銷無可厚非,“營(yíng)銷+AI”亦是一種趨勢(shì),問題在于濫用與無序。任其蔓延,不僅將對(duì)消費(fèi)者造成極大困擾,還會(huì)影響市場(chǎng)的良性運(yùn)轉(zhuǎn)。事實(shí)上,有人已自行琢磨應(yīng)對(duì)之計(jì),要么一聽是AI“秒掛斷”,要么設(shè)置語音助手,讓“魔法打敗魔法”。(北京日?qǐng)?bào) 評(píng))20...
客戶服務(wù)系統(tǒng)是整合人員、業(yè)務(wù)流程、技術(shù)和戰(zhàn)略的協(xié)調(diào)體系,通過多渠道交互實(shí)現(xiàn)客戶與企業(yè)價(jià)值共創(chuàng)。其**功能包括智能話務(wù)分配(ACD)、自動(dòng)語音應(yīng)答(IVR)、工單流程管理及數(shù)據(jù)分析模塊,支持電話、郵件、社交媒體等全渠道服務(wù)整合,旨在優(yōu)化服務(wù)響應(yīng)效率與客戶體驗(yàn) [1]。該系統(tǒng)概念于20世紀(jì)90年代隨呼叫中心技術(shù)興起,2003年進(jìn)入學(xué)術(shù)研究高峰期。2010年后隨計(jì)算機(jī)電話集成(CTI)技術(shù)成熟,逐步發(fā)展為涵蓋CRM、知識(shí)庫(kù)、智能質(zhì)檢的綜合平臺(tái) [1]。當(dāng)前系統(tǒng)融合自然語言處理與機(jī)器學(xué)習(xí)技術(shù),實(shí)現(xiàn)智能應(yīng)答、客戶畫像分析及預(yù)測(cè)***,并通過云端部署支持多行業(yè)應(yīng)用場(chǎng)景。技術(shù)演進(jìn)呈現(xiàn)從單一呼叫中心向全渠道智...
人類對(duì)齊:為確保模型輸出符合人類期望和價(jià)值觀,通常采用基于人類反饋的強(qiáng)化學(xué)習(xí)(RLHF)方法。這一方法首先通過標(biāo)注人員對(duì)模型輸出進(jìn)行偏好排序訓(xùn)練獎(jiǎng)勵(lì)模型,然后利用強(qiáng)化學(xué)習(xí)優(yōu)化模型輸出。雖然RLHF的計(jì)算需求高于指令微調(diào),但總體上仍遠(yuǎn)低于預(yù)訓(xùn)練階段。信息檢索傳統(tǒng)搜索引擎正面臨來自人工智能信息助手(如 ChatGPT)這種新型信息獲取方式的挑戰(zhàn):基于大語言模型的信息系統(tǒng)可以通過自然語言對(duì)話實(shí)現(xiàn)復(fù)雜問題的交互式解答。例如,微軟推出的增強(qiáng)型搜索引擎New Bing將大語言模型與傳統(tǒng)搜索技術(shù)融合,既保留了搜索引擎對(duì)實(shí)時(shí)數(shù)據(jù)的抓取能力,又?jǐn)U展了語義理解與答案整合功能。然而,大語言模型仍存在信息精確性不足、...
可進(jìn)行復(fù)雜推理經(jīng)過大規(guī)模文本數(shù)據(jù)預(yù)訓(xùn)練,大模型不僅能夠回答涉及復(fù)雜知識(shí)關(guān)系的推理問題,還可以解決需要復(fù)雜數(shù)學(xué)推理過程的數(shù)學(xué)題目。在這些任務(wù)中,傳統(tǒng)方法往往需要通過修改模型架構(gòu)或使用特定訓(xùn)練數(shù)據(jù)來提升能力,而大語言模型則憑借預(yù)訓(xùn)練過程中積累的豐富知識(shí)和龐大參數(shù)量,展現(xiàn)出更為強(qiáng)大的綜合推理能力。大語言模型05:31都在聊AI,那你知道AI是怎么訓(xùn)練出來的嗎?大語言模型主要應(yīng)用于自然語言處理領(lǐng)域,旨在理解、生成和處理人類語言文本。這些模型通過在大規(guī)模文本數(shù)據(jù)上進(jìn)行訓(xùn)練,能夠執(zhí)行包括文本生成、機(jī)器翻譯、情感分析等任務(wù)。大語言模型通常基于Transformer架構(gòu),通過自注意力機(jī)制有效捕捉文本中的長(zhǎng)距離...
智能客服系統(tǒng)是在大規(guī)模知識(shí)處理基礎(chǔ)上發(fā)展起來的一項(xiàng)面向行業(yè)應(yīng)用的,適用大規(guī)模知識(shí)處理、自然語言理解、知識(shí)管理、自動(dòng)**系統(tǒng)、推理等等技術(shù)行業(yè),智能客服不僅為企業(yè)提供了細(xì)粒度知識(shí)管理技術(shù),還為企業(yè)與海量用戶之間的溝通建立了一種基于自然語言的快捷有效的技術(shù)手段;同時(shí)還能夠?yàn)槠髽I(yè)提供精細(xì)化管理所需的統(tǒng)計(jì)分析信息。知識(shí)管理系統(tǒng)是基于我們十余年面向客戶服務(wù)的大型知識(shí)庫(kù)建立方法的經(jīng)驗(yàn)而形成的精細(xì)化結(jié)構(gòu)知識(shí)管理工具。系統(tǒng)內(nèi)設(shè)立一套通用化的知識(shí)管理建模方案,該方案可以迅速地幫助大型企業(yè)對(duì)龐雜的知識(shí)內(nèi)容進(jìn)行面向客戶化的知識(shí)管理。而該套方案是一般知識(shí)管理系統(tǒng)工具(如MS Sharepoint和IBM Lotus)...
支持多渠道接入,可支持電話、短信、MSN、QQ、飛信、BBS等渠道無縫接入支持面向CRM的數(shù)據(jù)深度挖掘分析。是幫助CFO寬心、放心、欣慰、得意的好產(chǎn)品,是CMO提出市場(chǎng)運(yùn)營(yíng)策略的數(shù)據(jù)基石。性能指標(biāo)系統(tǒng)召回率達(dá)到:95%,準(zhǔn)確率達(dá)到:95%,產(chǎn)品穩(wěn)定性、兼容性、運(yùn)行效率、并發(fā)能力、危機(jī)處理能力等產(chǎn)品化要求已達(dá)到電信級(jí)實(shí)用水平,并已實(shí)際在廣東移動(dòng)通信公司全省上線運(yùn)營(yíng)20個(gè)月,在Lenovo運(yùn)行6個(gè)月。人機(jī)交互愛客服智能機(jī)器人5大引擎擺脫人機(jī)交互困境,提升客服體驗(yàn)。語義分析引擎、分詞標(biāo)注引擎可以實(shí)現(xiàn)一個(gè)問題應(yīng)付各種相似問法的效果;使得用戶體驗(yàn)從5-10分鐘減為1-2條短信、Web交互、Wap交互,改...
客戶服務(wù)系統(tǒng)是整合人員、業(yè)務(wù)流程、技術(shù)和戰(zhàn)略的協(xié)調(diào)體系,通過多渠道交互實(shí)現(xiàn)客戶與企業(yè)價(jià)值共創(chuàng)。其**功能包括智能話務(wù)分配(ACD)、自動(dòng)語音應(yīng)答(IVR)、工單流程管理及數(shù)據(jù)分析模塊,支持電話、郵件、社交媒體等全渠道服務(wù)整合,旨在優(yōu)化服務(wù)響應(yīng)效率與客戶體驗(yàn) [1]。該系統(tǒng)概念于20世紀(jì)90年代隨呼叫中心技術(shù)興起,2003年進(jìn)入學(xué)術(shù)研究高峰期。2010年后隨計(jì)算機(jī)電話集成(CTI)技術(shù)成熟,逐步發(fā)展為涵蓋CRM、知識(shí)庫(kù)、智能質(zhì)檢的綜合平臺(tái) [1]。當(dāng)前系統(tǒng)融合自然語言處理與機(jī)器學(xué)習(xí)技術(shù),實(shí)現(xiàn)智能應(yīng)答、客戶畫像分析及預(yù)測(cè)***,并通過云端部署支持多行業(yè)應(yīng)用場(chǎng)景。技術(shù)演進(jìn)呈現(xiàn)從單一呼叫中心向全渠道智...