牙周組織成像:正畸牙齒移動的機制研究近紅外二區顯微成像系統利用1150nm熒光標記破骨細胞,研究正畸牙齒移動中的骨改建機制。在牙齒移動模型中,可觀察到壓力側破骨細胞的活化效率(熒光強度上升3倍)與骨吸收陷窩的形成速率(每天0.5μm),并通過光聲成像評估張力側的新骨形成密度(較壓力側高1.8倍)。系統支持不同正畸力值的療效對比,如發現適中力值(50g)可使破骨細胞活化效率較過大力值(100g)提升30%,且骨改建效率更高,為正畸醫治的力學優化提供影像學證據。該系統通過近紅外二區熒光導航,為小動物微創手術提供實時的腫塊邊界識別。陜西小動物近紅外二區顯微成像系統加裝
神經環路示蹤:跨突觸標記的高分辨成像結合逆行跨突觸病毒標記技術,系統在近紅外二區實現全腦范圍的神經環路追蹤。在小鼠嗅覺傳導通路研究中,熒光標記的狂犬病毒從嗅球逆行標記至梨狀皮層,系統以10μm分辨率重建神經元投射路徑,配合三維渲染技術展示突觸連接的立體網絡。其獨有的“纖維追蹤”算法可自動計算神經纖維的分支角度與傳導距離,為神經退行性疾病的環路損傷研究提供量化指標。該顯微成像系統在近紅外二區實現10mm組織穿透深度,無需開顱即可觀測腦皮層神經元。吉林X射線-熒光近紅外二區顯微成像系統代加工搭載InGaAs深度制冷相機,該系統在近紅外二區實現單光子級檢測靈敏度,捕捉微弱生物信號。
智能光譜解混:多標記樣本的精細識別針對多色熒光標記的復雜樣本,系統搭載的AI光譜解混算法(基于卷積神經網絡訓練)可自動分離8通道重疊熒光信號。在腫塊微環境研究中,同時標記CD3+T細胞(1050nm探針)、M2型巨噬細胞(1150nm探針)和增殖細胞(1250nm探針)時,算法能以98.7%的準確率區分各細胞群,并通過空間分布熱圖顯示免疫細胞與腫瘤細胞的相互作用區域,相較傳統手動分割效率提升15倍。 近紅外二區顯微成像系統以1000-1700nm波長突破組織散射極限,實現深層生物結構的高分辨可視化。
腸道菌群-宿主互作成像:空間定位的微生態研究通過熒光標記的益生菌(如1100nm標記的雙歧桿菌),系統在近紅外二區觀察菌群在腸道黏膜的定植動態。在炎癥性腸病模型中,可量化益生菌在受損腸段的黏附效率(較正常腸段高2.3倍),并通過代謝成像同步監測腸上皮細胞的屏障功能(緊密連接蛋白熒光強度)。這種“菌群-宿主”互作的可視化技術,為微生態調節劑的開發提供空間定位證據,突破傳統16S測序的“無空間信息”局限。集成光譜熒光壽命成像功能,該系統在近紅外二區區分不同探針的熒光衰減特性。該系統在近紅外二區可視化免疫細胞與腫瘤細胞的相互作用過程。
耳部毛細胞成像:聽力損傷與再生的可視化研究系統通過近紅外二區熒光探針(1100nm)標記內耳毛細胞,實現聽力相關研究的高分辨成像。在噪聲性耳聾模型中,可量化外毛細胞的損傷范圍(噪聲暴露后24小時損傷率達60%),并追蹤毛***過程中支持細胞的轉分化效率(7天內再生細胞占比15%)。配合聽性腦干反應(ABR)檢測,該成像技術能精細定位聽力損傷的細胞層面機制,如毛細胞缺失與ABR閾值升高的空間對應關系(r=0.91),為耳聾基因醫治提供靶向性依據。基于深度學習的圖像降噪算法,提升近紅外二區顯微成像的信噪比與分辨率。四川熒光近紅外二區顯微成像系統采購信息
近紅外二區顯微成像系統的自動聚焦功能,維持長時間成像的樣本清晰度。陜西小動物近紅外二區顯微成像系統加裝
毛發***成像:脫發機制與再生的動態研究近紅外二區顯微成像系統利用1100nm熒光標記***干細胞,追蹤***過程。在斑禿模型中,可觀察到***干細胞的活化延遲(誘導后3天活化率較正常低40%),并量化毛**血管的生成效率(血管密度下降35%)。系統支持不同脫發治療方案的療效對比,如局部注射干細胞可使***再生效率提升50%,且新生毛發的***直徑恢復至正常的85%,這些動態數據為脫發機制研究與再生療法開發提供可視化證據鏈。采用光纖耦合技術的顯微探頭,使近紅外二區成像系統適用于深部身體部位微創檢測。陜西小動物近紅外二區顯微成像系統加裝
上海數聯生物科技有限公司是一家專注近紅外二區熒光影像儀器和探針產品研發以及應用研究的高科技公司。我們不僅擁有化學、材料學、光學、生物學、醫學等跨學科并具備技術創新與應用科研能力的技術研發團隊,還擁有機電光軟各系統的完整儀器產品研發團隊。團隊共有30余人組成,98%的成員擁有博士&碩士學歷。我們的熒光影像儀器產品有近紅外二區寬場熒光成像系統、可見光區/近紅外二區寬場雙通道熒光成像系統、近紅外二區顯微成像系統,并開發了獨特的近紅外二區壽命熒光壽命成像系統,可應用于活體深組織定量監測。近紅外二區成像平臺對傳統成像的穿透深度、空間和時間分辨率都有很大的提升。除了成像儀器,我們在近紅外二區熒光探針的設計合成方面也具有獨特的優勢,我們的熒光探針產品包括有機熒光探針和無機熒光探針(稀土/量子點)以及探針表面功能化修飾。探針可針對不同的研究體系,在細胞、生物組織、小動物活體模型用于實時、高信噪比成像,也可通過設計實現對待測物的傳感響應功能。我們還承接科研實驗服務項目,包括腫瘤、心血管、炎癥、消化系統、可植入設備、肺功能、骨相關疾病、泌尿科、婦科、皮膚疾病等相關模型的建立以及成像監測等。