細胞內鈣離子作為重要的信號分子其作用具有時間性和空間性。當個細胞興奮時,產生了一個電沖動,此時,細胞外的鈣離子流入該細胞內,促使該細胞分泌神經遞質,神經遞質與相鄰的下一級神經細胞膜上的蛋白分子結合,促使這一級神經細胞產生新的電沖動。以此類推,神經信號便一級一級地傳遞下去,從而構成復雜的信號體系,較終形成學習、記憶等大腦的高級功能。在哺乳動物神經系統中,鈣離子同樣扮演著重要的信號分子的角色。靜息狀態下大部分神經元細胞內鈣離子濃度約為50-100nM,而細胞興奮時鈣離子濃度能瞬間上升10-100倍,增加的鈣離子對于突觸囊泡胞吐釋放神經遞質的過程必不可少。眾所周知,只有游離鈣才具有生物學活性,而細胞質內鈣離子濃度由鈣離子的內外流平衡所決定,同時也受鈣結合蛋白的影響。細胞外鈣離子內流的方式有很多種,其中包括電壓門控鈣離子通道、離子型谷氨酰胺受體、煙堿型膽堿能受體(nAChR)和瞬時受體電位C型通道(TRPC)等。對鈣離子的功能研究中,鈣指示劑是必不可少的工具。深圳熒光顯微鈣成像nVista3.0
霍華德休斯頓醫學研究所(HHMI)ScottSternson課題組研究了影響這種源源不斷的食欲的神經機制。他們通過使用Inscopix小顯微鏡觀察小鼠腦干區域的神經元,發現貪念美食的小鼠可能是因為特殊的大腦區域對美食和奶茶比其他小鼠更加敏感。本能會驅使我們在感到饑餓和干渴的時候尋找食物,在找到食物或水時通過眼睛看、鼻子聞、嘴巴嘗等方式來感受和決定要不要吃,吃到一定程度產生滿足感(或是吃了還想吃的不滿足感)。因此,要把大腦中匯集的關于吃喝的各類信號分清楚,并找出控制不同吃喝行為的神經環路無疑是很有挑戰的任務。ScottSternson博士的研究團隊在小鼠大腦中尋找饑餓和干渴神經環路共存的腦區。他們注意到,腦干的藍斑區(locuscoeruleus)附近有一群谷氨酸能神經元(被稱為periLC神經元),參與進食和飲水的行為,是餓和渴的匯聚點。為了研究這些神經細胞的功能,研究小組開發了一種技術,可以讓小鼠在自由活動的同時,通過Inscopix自由活動鈣成像顯微鏡觀察記錄腦干中periLC神經元的活動。這項研究的作者龔蓉博士表示,解決這個技術是此項研究的關鍵。江蘇超微顯微鈣成像什么價格利用鈣離子指示劑檢測組織或細胞內鈣離子濃度,進而反應組織或細胞內某些活動或反應。
轉基因Ca2+指示劑:轉基因技術和光遺傳技術的飛速發展,催生了基因編碼的Ca2+指示劑(GECIs)。它們不依賴于熒光染料,可以靶向特定的組織,如神經細胞、心肌細胞、T細胞等,并且可以避免熒光指示劑帶來的的許多問題,是監測轉基因動物體內鈣離子的一個極好的工具。個基因編碼的鈣離子指示劑Cameleon早在1997年就發表了。它是利用與鈣離子結合后發生結構變化,作為供體的CFP和作為受體的YFP之間產生FRET的原理。2000年,GCaMP誕生了。它是增強型綠色熒光蛋白(EGFP)和鈣調蛋白(結合鈣離子)、鈣調蛋白結合肽M13組成的,結合鈣離子后,鈣調素-M13相互作用引起GFP空間結構變化,發出綠色熒光(圖5)。GCaMP的問世有著**性的意義,它改變了我們觀察神經元群體活動的方式,讓科學家們可以在成千上萬的細胞中,看到哪些神經元在放電,它們放電的模式和規律是怎樣的,從而進一步探索各種內在的神經機制。
利用鈣成像技術記錄大腦活動。隨著功能光學成像技術的發展,神經學家們已經可以研究腦區和神經元內部的工作情況。功能鈣成像技術就是其中之一,其主要原理是將外源性熒光信號和生理現象耦合起來——通過熒光染料信號的改變反映細胞內游離鈣離子濃度,以此daibiao細胞的功能狀態。目前它被廣泛應用于實時監測一群相關神經元內鈣離子的變化,從而判斷其功能活動。該技術的出現使得科學家可以親眼目睹神經信號在神經網絡之中時間和空間上的傳遞穿梭。鈣離子也是神經元活動的重要“風向標”之一。
鈣離子通過參與多種細胞內信號傳導途徑來調控絕大多數類型神經元的功能。由于鈣離子信號在已知的細胞器結構中發揮其特定的功能,鈣離子成像顯得尤為重要。在神經系統中,由于神經元的多樣性,導致鈣離子功能也多樣化。在突觸前膜,鈣內流激發貯存神經遞質的神經小泡向胞外釋放;在突觸后膜,樹突棘內鈣水平瞬間升高,介導了突觸可塑性;在細胞核內,鈣信號能夠調控基因轉錄。現在常使用的鈣離子指示劑有化學性鈣離子指示劑(ChemicalIndicators)和基因編碼鈣離子指示劑(GeneticallyEncodedIndicators)兩類。鈣成像技術發現鈣離子產生各種各樣的胞內信號。北京光遺傳鈣成像聯系方式
鈣成像技術的不斷進步,使得人們對神經科學領域有了進一步的拓展。深圳熒光顯微鈣成像nVista3.0
研究顯示NL189BLA神經元通過投射到CEA來控制探索行為中動物的運動速度和瞬時停滯。隨著進一步的探索,該神經元群體的活性以經驗依賴性的方式增加,而NL189BLA神經元的暫時性功能喪失會導致瞬間停滯的yizhi,而且這些行為停滯與焦慮和恐懼無關。動物在這些停滯點開始和終止探索性旅程并在停滯后會改變頭部朝向和運動軌跡方向,因此在熟悉的位置進行短暫停滯可能是替代性嘗試錯誤行為的決策。這些結果揭示杏仁核作為新穎性/熟悉性檢測器以及行為效應器環路的共同作用,其具有基于探索行為期間的空間經驗來驅動或yizhi自發運動的能力,這對于動物在自然界中安全有效的探索未知環境是十分必要的。深圳熒光顯微鈣成像nVista3.0