對于雙光子成像而言,離焦和近表面熒光激發是兩個比較大的深度限制因素,而對于三光子(3P)成像這兩個問題大大減小,但是三光子成像由于熒光團的吸收截面比2P要小得多,所以需要更高數量級的脈沖能量才能獲得與2P激發的相同強度的熒光信號。功能性3P顯微鏡比結構性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經元活動;需要更高的脈沖能量,以便在每個像素停留時間內收集足夠的信號。復雜的行為通常涉及到大型的大腦神經網絡,該網絡既具有局部的連接又具有遠程的連接。要想將神經元活動與行為聯系起來,需要同時監控非常龐大且分布普遍的神經元的活動,大腦中的神經網絡會在幾十毫秒內處理傳入的刺激,要想了解這種快速的神經元動力學,就需要MPM具備對神經元進行快速成像的能力。快速MPM方法可分為單束掃描技術和多束掃描技術。多光子顯微鏡是衡量一個國家制造業和高科技發展水平的重要標準之一。在體多光子顯微鏡應用
多光子激發在紫外成像的優勢在可見光脈沖中能得到紫外衍射的顯微觀察像。即使不使用紫外域光源、光學元件用可見光源、光學元件就能得到紫外光激勵的高空間分辨率圖像。多光子在生物成像中的優勢在生物顯微鏡觀察方面,較早考慮的是不損壞生物本身的活性狀態,維持水分、離子濃度、氧和養分的流通。在光觀察場合,無論是熱還是光子能量方面都必須停留在細胞不受損傷的照射量、光能量內。多光子顯微鏡則能夠滿足此,而且還具有很多優點。如三維分辨率、深度侵入、在散射效率、背景光、信噪比、控制等方面,均有以往激光顯微鏡不具備,或具有無法比擬的超越特性。美國嚙齒類多光子顯微鏡多光子顯微鏡已經被生物學家普遍的運用于實驗中。
當細胞受到外界刺激時,隨著刺激時間的增加,即使繼續刺激,Ca2+熒光信號也不會繼續增強,反而會減弱,直至恢復到無刺激時的水平。對于細胞受精過程中Ca2+熒光信號的變化,發現粘附過程中Ca2+熒光信號沒有變化,但當配子融合時,Ca2+熒光信號強度出現一個不穩定的峰值,持續數分鐘。這些現象對于研究受精發育的早期信號以及Ca2+在卵子和受精卵發育中的作用具有重要意義。在其他生理過程中,如細胞分裂和胞吐,Ca2+熒光信號的強度也會發生很大的變化。
雙光子熒光顯微成像主要有以下優點:a.光損傷小:雙光子熒光顯微以可見光或近紅外光為激發光,對細胞和組織的光損傷小,適合長期研究;b.穿透力強:與紫外光、可見光或近紅外光相比,穿透力強,可用于生物樣品的深入研究;c.高分辨率:由于雙光子吸收截面很小P,熒光只能在焦平面很小的區域激發,雙光子吸收被限制在焦點λ左右的體積內;d.漂白區域很小,焦點外不發生漂白。E.高熒光收集率與共焦成像相比,雙光子成像不需要濾光片,提高了熒光收集率。采集效率的提高直接導致圖像對比度的提高。F.對探測光路要求低。由于激發光和發射熒光的波長差越來越大,加上自發三維濾波效應,多光子顯微鏡對光路采集系統的要求遠低于單光子共焦顯微鏡,光學系統也相對簡單。G.適用于多標簽復合測量許多染料熒光探針的多光子激發光譜比單光子激發光譜更寬,從而可以用單一波長的激發光同時激發多種染料,獲得同一生命現象的不同信息,便于相互比較和補充。多光子顯微鏡的分辨率比傳統的單光子共聚焦要低的多。
雙光子熒光顯微成像主要有以下優點∶a.光損傷小∶雙光子熒光顯微鏡使用可見光或近紅外光作為激發光,對細胞和組織的光損傷很小,適合于長時間的研究;b.穿透能力強∶相對于紫外光,可見光或近紅外光具有很強的穿透性,可以對生物樣品進行深層次的研究;c.高分辨率∶由于雙光子吸收截面很小P,只有在焦平面很小的區域內可以激發出熒光,雙光子吸收局限于焦點處的體積約為λ范圍內;d.漂白區域很小,焦點以外不發生漂白現象。e.熒光收集率高。與共聚焦成像相比,雙光子成像不需要光學濾波器,提高了熒光收集率。收集效率提高直接導致圖像對比度提高。f.對探測光路的要求低。由于激發光與發射熒光的波長差值加大以及自發的三維濾波效果,多光子顯微鏡對光路收集系統的要求比單光子共焦顯微鏡低得多,光學系統相對簡單。g.適合多標記復合測量。許多染料熒光探針的多光子激發光譜要比單光子激發譜寬闊,這樣,可以利用單一波長的激發光同時激發多種染料,從而得到同一生命現象中的不同信息,便于相互對照、補充。國內市場多光子顯微鏡銷售渠道。在體多光子顯微鏡應用
多光子顯微鏡的大多數補償器都采用棱鏡。在體多光子顯微鏡應用
對于雙光子(2P)成像,散焦和近表面熒光激發是兩個相對較大的深度限制因素,而對于三光子(3P)成像,這兩個問題**減少。然而,由于熒光團的吸收截面遠小于2P,三光子成像需要更高的脈沖能量才能獲得與2P相同激發強度的熒光信號。功能性3P顯微鏡比結構性3P顯微鏡要求更高,后者需要更快的掃描速度以便及時采樣神經元活動。為了在每個像素的停留時間內收集足夠的信號,需要更高的脈沖能量。復雜的行為通常涉及大規模的大腦神經網絡,這些網絡既有本地連接,也有遠程連接。為了將神經元的活動與行為聯系起來,需要同時監測***分布的超大型神經元的活動。大腦中的神經網絡將在幾十毫秒內處理輸入的刺激。為了理解這種快速神經元動力學,MPM需要快速成像神經元的能力。快速MPM方法可分為單束掃描技術和多束掃描技術。在體多光子顯微鏡應用