從雙光子到三光子:科學家正在從雙光子轉向三光子顯微鏡。1996年,ChrisXu在康奈爾大學(Denk同導師實驗室)讀博期間發明了三光子顯微鏡,如果雙光子吸收可行,那么三光子看起來也是自然的發展方向。三光子成像使用更長的波長,大約在1.3和1.7微米,其成像深度也比雙光子更深,目前記錄約為2.2毫米,人類大腦皮層厚約4毫米。相比雙光子顯微鏡,三光子還要求以較低重頻使用更強和更短的激光脈沖,而傳統的鈦寶石激光器難以達到這些要求,但是對于摻鐿光纖飛秒光參量放大器則非常容易,比如我們的Y-Fi光參量放大器(OPA)。雙光子顯微鏡是結合了雙光子技術和掃描共聚顯微鏡的一種新型熒光顯微鏡。激光雙光子顯微鏡磷光壽命計數
摻雜可以明顯影響碳點(CDs)的發射和激發特性,使雙光子碳點(TP-CDs)具有本征雙光子激發特性和605nm的紅光發射特性。在638nm激光照射下,除了長波激發和發射外,還可以實現活性氧(ROS)的產生,這為光動力技術提供了巨大的可能性。更重要的是,通過各種表征和理論模擬證實,摻雜誘導的N雜環在TP-CDs與RNA的親和力中起關鍵作用。這種親和力不僅為實現核仁特異性自我靶向提供了可能,而且通過ROS斷裂RNA鏈解離TP-CDs@RNA復合物,賦予治療過程中的熒光變異。TP-CDs結合了ROS的產生能力、光動力療法(PDT)過程中的熒光變化、長波激發和發射特性以及核仁的特異性自靶向性,可以認為是一種結合核仁動態變化實時處理的智能CDs。進口2PPLUS雙光子顯微鏡用途雙光子顯微鏡只有焦平面處才能形成雙光子吸收,而焦平面之外由于光強低無法被發動,所以雙光子成像更清晰。
從雙光子的原理和特點,我們可以清楚地得出雙光子的優點:☆光損傷小:由于雙光子顯微鏡采用可見光或近紅外光作為激發光源,因此該波段的光對細胞和組織的光損傷很小,適合長期研究;☆穿透能力強:與紫外光相比,可見光和近紅外光的穿透能力更強,因此受生物組織散射的影響更小,解決了生物組織深層物質的層析成像問題;☆高分辨率:由于雙光子吸收的截面很小,只能在焦平面很小的區域激發熒光,雙光子吸收被限制在焦點處體積約為波長三次方的范圍內;☆漂白區域小:由于激發只存在于交點處,焦點外的區域不會發生光漂白;☆熒光收集率高:與共焦成像相比,雙光子成像不需要濾光片(共焦),提高了熒光收集率,直接導致圖像對比度的提高;☆圖像對比度高:由于熒光波長小于入射波長,瑞利散射產生的背景噪聲*為單光子激發產生的1/16,減少了散射的干擾;光子躍遷具有很強的選擇性激發,因此可以用來對生物組織中的一些特殊物質進行成像;
生物樣品的三維觀察是了解細胞功能的重要方法之一。目前已有的三維熒光成像技術有光學顯微鏡、點陣照明和激光掃描顯微鏡(如共焦顯微鏡和雙光子顯微鏡)。其中,激光掃描顯微鏡利用轉盤可以進行多焦點激光掃描,提高了時間分辨率,有利于減少活細胞成像中的光損傷。本文主要實現可見光雙光子激發和多焦點激光掃描的結合,**終提高三維延遲掃描中的空間分辨率和成像對比度,這也是可見光雙光子激發(v2PE)在超高分辨率顯微鏡中的應用。雙光子顯微鏡已成為較厚有生命體生物組織三維成像中不可或缺的工具。
隨著技術的發展,雙光子顯微鏡的性能得到不斷地優化,結合它的特點,大致可以分成深和活兩個方面的提升。要想讓激發激光進入更深的層面,大致可從兩個方面入手,裝置優化與標本改造。關于裝置優化,我們可以把激光束變得更細,使能量更加集中,就能讓激光穿透更深。關于標本,其中影響光傳播的主要是物質吸收和散射,解決這個問題,我們需要對樣本進行透明化處理。一種方法是運用某種物質將標本浸泡,使其中的物質(主要是脂質)被破壞或溶解。另一種方法是運用電泳將脂質電解,讓標本“透明度”提高。雙光子顯微鏡已延伸到各個領域研究中,它能對樣品進行三維觀察。2PPLUS雙光子顯微鏡成像原理是什么
雙光子顯微鏡廠家就找滔博生物。激光雙光子顯微鏡磷光壽命計數
有了雙光子激發技術,激光共聚掃描顯微鏡可以發揮更好的作用。那么,什么是雙光子激發技術呢?在光子密度較高的情況下,熒光分子可以同時吸收兩個波長較長的光子,使電子躍遷到更高的能級。短時間后,電子跳回到較低的能級,發出波長為長波長一半的光子(P=h/λ)。利用這個原理,雙光子激發技術誕生了。雙光子顯微鏡使用長波長脈沖激光通過物鏡會聚。由于雙光子激發需要很高的光子密度,物鏡焦點處的光子密度比較高,所以雙光子激發只能發生在焦點處產生熒光,該點產生的熒光穿過物鏡,被光學探頭接收,從而達到逐點掃描的效果。激光雙光子顯微鏡磷光壽命計數