“啟明935A”系列芯片已經成功點亮,并完成各項功能性測試,達到車規級量產標準。啟明935A是行業首顆基于Chiplet(芯粒/小芯片)異構集成范式的自動駕駛芯片,但并非單一芯片,而是一個家族系列。啟明935HUBChiplet可以和不同數量的大熊星座AIChiplet互相搭配,再結合靈活的封裝方式,快速形成不同性能等級的SoC芯片。它還支持高帶寬的PBLink多芯互連,雙芯雙向帶寬128GB/s,四芯雙向帶寬64GB/s。啟明935A每顆芯片都支持比較大20路的1080p60攝像頭輸入,可應用于各類端側AI部署。得益于大熊星座NPU天然支持Transformer結構,初步支持的模型有Yolo系列、ResNet50、PSPNet、PointNet++、TrafficSign_Retinanet、BevDet、miniCPM、Unet_ResNet50、PointPillars、PillarNest、M2track、BevFusion、PaliGemma、LLaMa-3B、8B等等。如何打造一個完整的目標識別方案?天津低壓線目標識別遠程協助
成都慧視開發Viztra-HE030圖像處理板就十分合適,工業級芯片RK3588的加持下,至高輸出6.0TOPS的算力,足以滿足工業檢測需求。而像背景稍微簡單的地面人、車,湖面船舶的檢測,如果不是特殊需求,選擇性能適中的Viztra-ME025圖像處理板就能夠滿足需求。板卡采用國內智能AI芯片RK3399Pro,基于雙Cortex-A72+四Cortex-A53大小核CPU結構;CPU主頻1.8GHz;能夠輸出3.0TOPS的算力,在我司高精尖目標識別算法的賦能下,就能夠實現人車船的檢測識別。湖北哪里有目標識別辦公平臺Viztra-LE026是一個小型化低功耗的AI識別模塊。
在如今的作業中,無人機路面巡查替代傳統的人工巡查,展現出巨大的效率優勢。像高速施工工地這樣的環境下,施工方為了保障施工安全,就需要對施工范圍進行嚴格管控,傳統的人工巡查效率低,受限于地形、時間等問題,容易出現盲點。相比人工,利用無人機進行AI識別則可以逐幀圖像監測,即便是夜晚也能夠利用紅外傳感器進行數據收集,幾乎不會遺漏任何信息。而交通管理部門,則可以利用無人機快速到底事故地點進行疏導,緩解交通壓力。
隨著科技的不斷進步,食品檢測設備也在持續創新升級。光譜分析技術、色譜技術、生物傳感技術等先進技術被廣泛應用于食品檢測領域,使得檢測更加高效、準確、靈敏。例如,基于納米技術的傳感器能夠檢測出極其微量的有害物質,為食品安全提供了更為可靠的保障。同時,智能化、自動化的食品檢測設備也在逐漸普及,不僅提高了檢測效率,還降低了人為誤差,進一步提升了檢測的可靠性和穩定性。然而,當前食品檢測設備的發展仍面臨一些挑戰。部分小型食品企業由于資金有限,難以配備先進的檢測設備,導致檢測能力不足;一些偏遠地區的食品檢測機構,也存在設備陳舊、更新換代慢等問題。此外,食品檢測設備的標準體系有待進一步完善,不同設備之間的檢測結果可比性還需加強。應急無人機用AI圖像處理板選慧視光電。
物聯網與人工智能的融合是一個多維度的技術整合過程,涉及數據的收集、分析和智能決策。這一融合的基礎在于如何有效地利用物聯網設備收集的海量數據,并借助人工智能技術進行深入分析和應用。物聯網設備,包括各種傳感器和執行器,是數據收集的前線。它們能夠實時監測環境參數、設備狀態和用戶行為,生成大量數據。這些數據是后續分析和決策的基礎。人工智能在數據分析方面的能力是其與物聯網融合的關鍵。通過機器學習和深度學習算法,可以從物聯網設備收集的數據中識別模式、預測趨勢和發現異常。這些分析結果為智能決策提供了依據。打造一套穩定的識別模塊需要多久?山東網絡目標識別解決方案
Viztra-LE034是采用RV1126開發而成的AI識別模塊。天津低壓線目標識別遠程協助
目前,采用圖像識別技術來實現無人機規避其他障礙物是一個有效的方法。通過在無人機上植入圖像識別模塊,這個模塊由圖像處理板和相機組合而成,通過算法的賦能,就能針對不同物體實現快速AI識別,然后實現規避。而在圖像處理板的選擇上,成都慧視開發的Viztra-LE026圖像處理板就十分合適。這塊板卡采用了RV1126開發設計而成,外形呈圓形,體積小巧,尺寸為Ф38mm*12mm,重量只有12g,用在無人機上不會過多占用空間。此外,該板卡功耗≤4W,也不會增加無人機的續航負擔。天津低壓線目標識別遠程協助