刀具切削狀態的實時監測與管理也是實現制造系統現代化、自動化、柔性化的基礎。出現于90年代的智能刀具技術受到越來越多的關注,并在近20年來得到迅速發展。精確地預報刀具在加工中,尤其是在制造成本極高的精密零件加工中的失效時間對提高零件的加工效率和質量、減少生產成本及研制周期具有重要意義。日本京瓷工業陶瓷公司提出一種裝有磨損傳感器的可轉位刀片刀具壽命診斷系統。這種智能刀具系統采用Ceratip傳感器,它在正方形的陶瓷刀片表面上,涂覆一層厚度為0.3μm的TiN,刀具在開始切削時,使裝有傳感器的刀片涂覆層通過電流,形成一微電子回路。當刀具在切削力的作用下磨損時,刀片表面上的TiN涂覆層首先被破壞,這時電流不能通過裝有傳感器的刀片涂覆層(斷電),用電表測量時,此處微電子回路的電阻變為無限大。這時裝在刀片上的傳感器,將立即向機床控制系統發出信號,由機床控制系統控制機床立刻停機并執行自動換刀程序。這種刀具壽命診斷系統能直接測量出刀尖的磨損情況并快速、準確地預報刀具的失效時間。時間域、頻率域以及角度域的NVH分析方法,可以對汽車動力總成的各種故障進行實時識別、監測和診斷。專業監測控制策略
設備監測是指對設備運行狀態進行實時或定期的監測和檢測,以獲取設備的關鍵性能指標、故障信息等數據,并對這些數據進行分析、處理和解釋,以便及時發現設備的健康狀況,并根據監測結果制定相應的維護計劃和改進措施。設備監測通常通過傳感器、監測系統、計算機軟件等技術手段進行實現,以提高設備的可靠性、可用性和效率,降低設備故障率和維修成本,提高設備的生命周期價值。設備監測在制造業、能源、交通、建筑、環保等領域得到廣泛應用。設備監測一般分為以下步驟:①從設備上收集數據;②將收集到的數據傳輸至平臺,如PreMaint設備健康管理平臺;③監控和分析收集到的設備數據。南京耐久監測設備β-Star監測系統是盈蓓德智能科技有限公司的產品,為大型電機提供數據監測和故障預判服務。
常見的設備監測數據包含以下幾類:1.運行數據:包括設備的運轉時間、運轉速度、負載情況、溫度、壓力等參數。這些數據可以反映設備的運行狀態和性能表現,以便進行運行效率評估、健康狀況評估以及預測維護等。2.電氣數據:包括設備的電流、電壓、功率、電阻等參數。這些數據可以反映設備的電氣性能和電能消耗情況,以便進行能效評估、設備故障診斷等。3.振動數據:包括設備的振動幅值、頻率、相位等參數。這些數據可以反映設備的振動情況,以便進行故障診斷和預測維護等。4.聲音數據:包括設備的聲音頻率、聲音強度、聲音特征等參數。這些數據可以反映設備的聲學性能,以便進行故障診斷和預測維護等。5.圖像數據:包括設備的照片、視頻、紅外圖像等。這些數據可以反映設備的外觀、結構、熱特性等信息,以便進行故障診斷、安全檢查和維護計劃制定等。6.環境數據:包括設備周圍環境的溫度、濕度、氣壓、光照等參數。這些數據可以反映設備所處的環境條件,以便進行設備健康評估、預測維護等。
在預防性維護的應用中,振動是大型旋轉等設備即將發生故障的重要指標,一是由于在大型旋轉機械設備的所有故障中,振動問題出現的概率比較高;另一方面,振動信號包含了豐富的機械及運行的狀態信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監測和診斷。旋轉類設備的預防性維護需要重點監控振動量的變化。其預測性診斷技術對于制造業、風電等的行業的運維具有非常重大的意義。通過設備振動等狀態的預測性維護,可以及時發現并解決系統及零部件存在問題。但是對于一些不是因為設備問題而存在的固有振動,振動強度的不必要增加會對部件產生有害的力,危及設備的使用壽命和質量。在這種情況下,則需要采用振動隔離技術來解決和干預,有效抑制振動和噪聲的危害,避免設備故障和流程關閉。電機監測系統選擇傳感器采集旋轉設備的溫度、振動數據,分析變化趨勢以判斷設備情況。
傳統方法通常無法自適應提取特征, 同時需要一定的離線數據訓練得到檢測模型, 但目標對象在線場景下采集到的數據有限, 且其數據分布與訓練數據的分布可能因隨機噪聲、變工況等原因而存在差異, 導致離線訓練的模型并不完全適合于在線數據, 容易降低檢測結果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關系, 容易因數據微小波動而產生誤報警, 降低檢測結果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復調整報警閾值. 此外, 基于系統分析的故障診斷方法利用狀態空間描述建立機理模型, 可獲得理想的診斷和檢測結果, 但這類方法通常需要提前知道系統運動方程等信息, 對于軸承運行過程來說, 這類信息通常不易獲知. 近年來, 深度神經網絡已被成功應用于早期故障特征的自動提取和識別, 可自適應地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數據進行模型訓練, 而歷史采集的輔助數據與目標對象數據可能存在較大不同, 直接訓練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓練過程中未能針對早期故障引發的狀態變化而有目的地強化相應特征表示. 因此, 深度學習方法在早期故障在線監測中的應用仍存在較大的提升空間.盈蓓德科技可以提供更經濟更可靠的旋轉設備健康狀態監測方案。南京產品質量監測介紹
振動檢測儀應用于設備狀態監測,在設備預知維修中起到了重要的作用。專業監測控制策略
電機狀態監測和振動分析提供加速度計選擇的建議。這些建議基于直流和非同步交流電機的常見故障。這些常見故障可通過振動分析檢測出來,包括機械和電氣故障。重點是傳感器的頻率范圍及其安裝方法,以便可靠地檢測這些故障。例如,考慮以幾百赫茲的周期性頻率(稱為故障頻率)發生的撞擊事件,但每個事件的能量可從起始點帶走,頻率在低至千赫范圍內。因此,用于檢測撞擊、摩擦和凹槽等事件的傳感器應在幾百赫茲到20千赫的寬頻范圍內響應。對于傳統的機械故障,如平衡和對準,頻率范圍從約0.2倍的運行速度到50-60倍的運行速度是足夠的。電氣故障需要機械故障所需的低頻和高頻段。
電機會同時出現機械和電氣故障,這會導致振動。只要安裝的振動傳感器具有足夠的帶寬和靈敏度,就可以檢測到這些故障。機械故障伴隨著沖擊、摩擦和疲勞,會產生比電氣故障頻率更***的振動,但凹槽除外。凹槽產生的振動頻率與摩擦頻率大致相同。如果傳感器的帶寬和安裝方法足以檢測機械故障,那么它們也將檢測電氣故障。 專業監測控制策略
上海盈蓓德智能科技有限公司致力于電工電氣,是一家其他型公司。公司自成立以來,以質量為發展,讓匠心彌散在每個細節,公司旗下智能在線監診系統,西門子Anovis,聲音與振動分析,主動減振降噪系統深受客戶的喜愛。公司注重以質量為中心,以服務為理念,秉持誠信為本的理念,打造電工電氣良好品牌。盈蓓德科技立足于全國市場,依托強大的研發實力,融合前沿的技術理念,及時響應客戶的需求。