設備狀態監測和故障診斷技術是設備維護手段之一。設備的故障監測診斷技術,就是利用科學的檢測方法和現代化技術手段,對設備目前的運行狀態進行監測和排查,從而判斷出設備運行狀態的可靠性,確認其局部或整機是否正常運行。煤礦用機電設備溫度振動監測系統***用于煤礦主扇、壓風機、鋼絲繩牽引帶式輸送機、滾筒帶式輸送機、排水泵和電動機、提升機等,有助于掌握設備運行工況中的溫度振動數據。
提升機、鋼絲繩牽引、滾筒帶式輸送機、皮帶機、空壓機、壓風機、水泵等煤礦機電設備要求增加電動機及主要軸承溫度和振動監測。裝置功能:1、提升機、水泵、皮帶機等設備電動機主軸承溫度振動在線監測2、礦用高壓異步電動機軸承溫度振動檢測診斷3、提升機、水泵、皮帶機等設備滾筒主軸承溫度振動在線監測4、井下大型機電設備電動機及主要軸承溫度振動在線監測5、可以同時收集電機前后軸承溫度及電機振動量的數值,對收到的信息分析處理6、系統提供網絡接口,可直接與智能礦山網絡相連,也可與其它網絡內的系統連接;7、在線系統軟件可實時監測任意通道的頻譜,時域波形、趨勢、三維譜圖和坐標圖,還可通過互聯網進行遠程監測。 有效的刀具監測系統可大幅度提效率、提高工件尺寸精度和一致性、減少生產成本,實現數控加工自動化。南通動力設備監測臺
刀具監測主要采用人工檢測、離線檢測和在線檢測三種策略。人工檢查是指工人在加工過程中可以憑經驗檢查刀具的狀態;離線檢測是在加工前專門對刀具進行檢測,預測其壽命,看是否能勝任當前的加工;在線檢測又稱實時檢測,是在加工過程中對刀具進行實時檢測,并根據檢測結果做出相應的處理。目前刀具檢測的算法有很多,有的是利用理論計算刀具上應力的變化來判斷刀具的損傷.有的是利用時間序列分析來檢測刀具,有的是利用神經網絡技術來檢測刀具。還有的是利用小波變換理論和神經網絡技術來檢測刀具,但都是以理論為主。考慮到刀具的塑性損傷在數控加工中很少發生,磨損對數控加工的安全性影響很小,并且可以通過離線檢測進行加工,通過在線檢測,可以判斷微裂紋在當前載荷條件下是否會擴展。如果有可能擴大,我們認為載 荷是危險的,通過減少刀具的進給量來減少刀具上的載荷,以保證刀具的安全性。杭州穩定監測方案監測系統利用不同工況下輔助數據所蘊含的故障發生模式信息, 提高在線環境下時序異常檢測精度。
動力裝備全壽命周期監測診斷方面:實現了支持物聯網的智能信息采集與管理、全生命周期動態自適應監測、早期非線性故障特征提取。優化重構出綜合體現裝備運行工況及表現的新參數,提高異常狀態辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發展規律,來提高故障早期辨識能力。動力裝備全生命周期性能優化服務方面:提供了轉子全息動平衡快速響應與服務支持、以全息譜為**的失衡故障確診、動力裝備轉子和軸系平衡配重方案優化。基于物聯網和網絡化監測診斷將產品監測診斷與運行服務支持有機集成一體,在應用中實現動力裝備常見故障診斷準確率達80%以上。可應用于風力大電機、空壓機、氮壓機等大型動力裝備的集群化診斷領域。提供了基于物聯網的動力裝備全生命周期監測與服務支持創新模式,提供了其生命周期的遠程監測診斷與維護等專業化服務。
深度學習技術已在滾動軸承故障監測和診斷領域取得了成功應用, 但面對不停機情況下的早期故障在線監測問題, 仍存在著早期故障特征表示不充分、誤報警率高等不足. 為解決上述問題, 本文從時序異常檢測的角度出發, 提出了一種基于深度遷移學習的早期故障在線檢測方法. 首先, 提出一種面向多域遷移的深度自編碼網絡, 通過構建具有改進的比較大均值差異正則項和Laplace正則項的損失函數, 在自適應提取不同域數據的公共特征表示同時, 提高正常狀態和早期故障狀態之間特征的差異性; 基于該特征表示, 提出一種基于時序異常模式的在線檢測模型, 利用離線軸承正常狀態的排列熵值構建報警閾值, 實現在線數據中異常序列的快速匹配, 同時提高在線檢測結果的可靠性. 在XJTU-SY數據集上的實驗結果表明, 與現有代表性早期故障檢測方法相比, 本文方法具有更好的檢測實時性和更低的誤報警數.電機發生故障前進行監測和故障預測,成為本領域技術人員亟需解決的技術問題。
刀具切削狀態的實時監測與管理也是實現制造系統現代化、自動化、柔性化的基礎。出現于90年代的智能刀具技術受到越來越多的關注,并在近20年來得到迅速發展。精確地預報刀具在加工中,尤其是在制造成本極高的精密零件加工中的失效時間對提高零件的加工效率和質量、減少生產成本及研制周期具有重要意義。日本京瓷工業陶瓷公司提出一種裝有磨損傳感器的可轉位刀片刀具壽命診斷系統。這種智能刀具系統采用Ceratip傳感器,它在正方形的陶瓷刀片表面上,涂覆一層厚度為0.3μm的TiN,刀具在開始切削時,使裝有傳感器的刀片涂覆層通過電流,形成一微電子回路。當刀具在切削力的作用下磨損時,刀片表面上的TiN涂覆層首先被破壞,這時電流不能通過裝有傳感器的刀片涂覆層(斷電),用電表測量時,此處微電子回路的電阻變為無限大。這時裝在刀片上的傳感器,將立即向機床控制系統發出信號,由機床控制系統控制機床立刻停機并執行自動換刀程序。這種刀具壽命診斷系統能直接測量出刀尖的磨損情況并快速、準確地預報刀具的失效時間。測量電機關鍵參數,利用AI融合工業機理算法,構建故障模型庫,實現邊緣側數據實時分析和決策。杭州EOL監測應用
盈蓓德科技通過在機測量和檢測,進行數控機床的刀具質量監測。南通動力設備監測臺
目前設備狀態監測及故障預警若干關鍵技術可歸納如下:(1)揭示設備運行狀態機械動態特性劣化演變規律。設備由非故障運行狀態劣化為故障運行狀態,其機械動態特性通常有一個發展演變過程。需揭示劣化過程及故障變化演變規律及發展特點,分析故障產生機理、發展原因和發展模式,構建劣化演變機械動態特性模型。(2)提取設備運行狀態發展趨勢特征。在役設備往往具有復雜運行狀態,在長歷程運行中工況和負載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進而構建預測模型。若提取到敏感特征分量因子及模式,有望實現典型部件及部位分析。南通動力設備監測臺
上海盈蓓德智能科技有限公司成立于2019-01-02,位于上海市閔行區新龍路1333號28幢328室,公司自成立以來通過規范化運營和高質量服務,贏得了客戶及社會的一致認可和好評。公司具有智能在線監診系統,西門子Anovis,聲音與振動分析,主動減振降噪系統等多種產品,根據客戶不同的需求,提供不同類型的產品。公司擁有一批熱情敬業、經驗豐富的服務團隊,為客戶提供服務。依托成熟的產品資源和渠道資源,向全國生產、銷售智能在線監診系統,西門子Anovis,聲音與振動分析,主動減振降噪系統產品,經過多年的沉淀和發展已經形成了科學的管理制度、豐富的產品類型。我們本著客戶滿意的原則為客戶提供智能在線監診系統,西門子Anovis,聲音與振動分析,主動減振降噪系統產品售前服務,為客戶提供周到的售后服務。價格低廉優惠,服務周到,歡迎您的來電!