作為工業領域的一種關鍵旋轉設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、檢修人員等;對于電機廠家以及電機經銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經有很多智能產品號稱可以實現電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態監測需要振動、噪聲、溫度傳感器,通訊協議并不統一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業場景設備類型多,運行工況復雜,預測性維護算法涉及數據預處理、工業機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現,前期需要大量歷史數據的支撐,數據采集、歸納、分析是一個漫長的過程。電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!監測結果的反饋可以幫助我們改進產品的設計和功能。南京穩定監測應用
電機是工業領域中使用的動力設備,其性能和安全性對于整個生產過程具有重要影響。為了確保電機的正常運行和延長使用壽命,電機監測技術成為了關鍵的保障措施。一、電機監測的重要性電機監測可以實時監測電機的運行狀態,包括溫度、電流、電壓、振動等參數,從而及時發現潛在的問題和故障。通過電機監測,可以避免因電機故障導致的生產中斷和設備損壞,降低維修成本,提高生產效率。同時,電機監測還可以為預防性維護提供數據支持,幫助企業制定合理的維護計劃,延長設備使用壽命。二、電機監測的方法溫度監測:通過溫度傳感器實時監測電機的溫度變化,確保電機在正常溫度范圍內運行。當溫度過高時,可以及時采取措施防止電機過熱。電流監測:通過電流傳感器實時監測電機的電流變化,判斷電機的負載情況和運行狀態。當電流異常時,可以及時發現電機故障或過載情況。電壓監測:通過電壓傳感器實時監測電機的電壓變化,確保電機在正常電壓范圍內運行。當電壓過高或過低時,可以及時采取措施防止電機損壞。振動監測:通過振動傳感器實時監測電機的振動情況,判斷電機的運行狀態和潛在故障。當振動異常時,可以及時發現電機軸承磨損、不平衡等問題。南京研發監測系統供應商工業能源消耗的監測檢測可以幫助企業節約能源,降低生產成本,提高經濟效益。
電機監測的未來發展隨著科技的不斷進步和工業領域的多樣化發展,電機監測的方法和手段也在不斷更新和完善。未來,電機監測將更加注重智能化、自動化和網絡化的發展,實現更加高效的監測過程。同時,隨著人工智能、大數據等技術的不斷發展,電機監測將更加注重數據分析和挖掘,為工業領域提供更加全、深入的監測服務。此外,隨著環保要求的提高和新能源汽車的快速發展,電機監測也將更加注重環保性能和新能源兼容性的測試。總之,電機監測是保障設備安全與性能的關鍵技術。通過對電機進行實時監測,可以及時發現潛在的問題和故障,為消費者提供安全、可靠的工業產品。同時,隨著科技的不斷進步和工業領域的多樣化發展,電機監測的方法和手段也在不斷更新和完善,為工業領域的發展提供了有力支持。
隨著電力電子技術、自動化控制技術的不斷發展,電機在工業生產以及家用電器中得到了應用,在市場競爭中正逐步顯示自己的優勢。傳統的電機在線監測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統的監測方法要求監測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監測方法無法做定量分析,無法更加準確、實時掌握電機的運行狀態和故障。技術實現要素:本發明提出了一種電機在線監測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、功率和效率進行實時動態的監測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態和故障的技術問題。監測結果的比較可以幫助我們評估競爭對手的優勢和劣勢。
通過故障機理分析可知,交流電機運行過程中,其故障與否必然表現為一些特征參量的變化,根據診斷需要,選擇有代表性的特征參量為該設備在線監測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規的監測方法,因受傳感器的準確性、微處理器的速度、A/D轉換的分辨率與轉換速度等硬件條件的限制,以及一般的數據處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調制的形式存在于所監測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調處理,就能方便地獲得故障特征信息,以確定電機設備所發生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換等。監測結果的反饋可以幫助我們改進產品和服務的質量。無錫功能監測介紹
監測結果的分析可以幫助我們了解市場的潛在機會和風險。南京穩定監測應用
基于數據的故障檢測與診斷方法能夠對海量工業數據進行統計分析和特征提取,將系統的狀態分為正常運行狀態和故障狀態,可視為模式識別任務。故障檢測是判斷系統是否處于預期的正常運行狀態,判斷系統是否發生異常故障,相當于一個二分類任務。故障診斷是在確定發生故障的時候判斷系統處于哪一種故障狀態,相當于一個多分類任務。因此,故障檢測和診斷技術的研究類似于模式識別,分為4個的步驟:數據獲取、特征提取、特征選擇和特征分類。1)數據獲取步驟是從過程系統收集可能影響過程狀態的信號,包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號映射為有辨識度的狀態信息;3)特征選擇步驟是將與狀態變化相關的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進行故障檢測與診斷。在大數據這一背景下,傳統的基于數據的故障檢測與診斷方法被廣泛應用,但是,這些方法有一些共同的缺點:特征提取需要大量的知識和信號處理技術,并且對于不同的任務,沒有統一的程序來完成。此外,常規的基于機器學習的方法結構較淺,在提取信號的高維非線性關系方面能力有限。南京穩定監測應用