★ 大量的繪圖和動畫工具,包括超過150種圖形類型。基于OpenGL的可視化技術(shù),可定義相機(jī)軌跡。圖片輸出格式包括:BMP、DXF、EPS、GIF、等等。★ 數(shù)據(jù)輸入和輸出格式:ASCII、CSV、MATLAB、Excel、等。★ 各種文件處理工具,如頁眉頁腳、段落、幻燈片等;各種圖元件,刻度盤、滑動條、按鈕等,可在圖元件中添加程序,實(shí)現(xiàn)交互式仿真操作。知識捕捉★ Maple是您所有數(shù)學(xué)工作的理想環(huán)境,您所想象的數(shù)學(xué)就是您在Maple中做數(shù)學(xué)的方式。★ 多種格式(1D、2D)輸入數(shù)學(xué)內(nèi)容,如教科書一樣地顯示和操作數(shù)學(xué)和文字。Python是一種通用編程語言,結(jié)合NumPy和SciPy等庫,可以進(jìn)行高效的科學(xué)計(jì)算和數(shù)據(jù)分析。金山區(qū)挑選科學(xué)計(jì)算軟件設(shè)計(jì)
Dimension 行數(shù)和列數(shù)DotProduct 點(diǎn)積BilinearForm 向量的雙線性形式EigenConditionNumbers 計(jì)算數(shù)值特征值制約問題的特征值或特征向量的條件數(shù)Eigenvalues 計(jì)算矩陣的特征值Eigenvectors 計(jì)算矩陣的特征向量Equal 比較兩個(gè)向量或矩陣是否相等ForwardSubstitute 求解 A . X = B,其中 A 為下三角型行階梯矩陣FrobeniusForm 將一個(gè)方陣約化為 Frobenius 型(有理標(biāo)準(zhǔn)型)GaussianElimination 對矩陣作高斯消元ReducedRowEchelonForm 對矩陣作高斯-約當(dāng)消元GetResultDataType 返回矩陣或向量運(yùn)算的結(jié)果數(shù)據(jù)類型松江區(qū)挑選科學(xué)計(jì)算軟件價(jià)格在工程設(shè)計(jì)領(lǐng)域,工程師可以利用軟件進(jìn)行結(jié)構(gòu)分析、流體動力學(xué)模擬等,以優(yōu)化設(shè)計(jì)方案制造成本。
SchurForm 將方陣約化為 Schur 型SingularValues 計(jì)算矩陣的奇異值SmithForm 將矩陣約化為 Smith 正規(guī)型StronglyConnectedBlocks 計(jì)算方陣的強(qiáng)連通塊SubMatrix 構(gòu)造矩陣的子矩陣SubVector 構(gòu)造向量的子向量SylvesterMatrix 構(gòu)造兩個(gè)多項(xiàng)式的 Sylvester 矩陣ToeplitzMatrix 構(gòu)造 Toeplitz 矩陣Trace 計(jì)算方陣的跡Transpose轉(zhuǎn)置矩陣HermitianTranspose 共軛轉(zhuǎn)置矩陣TridiagonalForm 將方陣約化為三對角型UnitVector 構(gòu)造單位向量VandermondeMatrix 構(gòu)造一個(gè) Vandermonde 矩陣VectorAngle 計(jì)算兩個(gè)向量的夾角
二、科學(xué)計(jì)算軟件的應(yīng)用科學(xué)計(jì)算軟件的應(yīng)用范圍廣泛,幾乎涵蓋了所有需要精確計(jì)算的領(lǐng)域。在高等教育中,科學(xué)計(jì)算軟件成為學(xué)生學(xué)習(xí)高等數(shù)學(xué)、物理、工程等學(xué)科的得力助手。例如,Matlab軟件在數(shù)列極限、函數(shù)極限教學(xué)中的應(yīng)用,極大地幫助學(xué)生理解和掌握這些抽象概念。在科研領(lǐng)域,科學(xué)計(jì)算軟件更是不可或缺。研究人員可以利用這些軟件進(jìn)行復(fù)雜的模擬實(shí)驗(yàn)、數(shù)據(jù)分析以及結(jié)果可視化,從而加速科研進(jìn)程,提高研究效率。此外,科學(xué)計(jì)算軟件還在工程設(shè)計(jì)、金融分析、醫(yī)學(xué)圖像處理等領(lǐng)域發(fā)揮著重要作用。在工程設(shè)計(jì)領(lǐng)域,工程師可以利用軟件進(jìn)行結(jié)構(gòu)分析、流體動力學(xué)模擬等,以優(yōu)化設(shè)計(jì)方案,降**造成本。在金融分析領(lǐng)域,科學(xué)計(jì)算軟件能夠處理大量的市場數(shù)據(jù),幫助投資者做出更加明智的決策。在醫(yī)學(xué)圖像處理領(lǐng)域,軟件能夠輔助醫(yī)生進(jìn)行病灶檢測、手術(shù)規(guī)劃等,提高醫(yī)療服務(wù)的質(zhì)量和效率。通過自動化測試、智能推薦等功能,軟件能夠輔助用戶更加高效地完成計(jì)算任務(wù)。
MatrixMatrixMultiply 計(jì)算兩個(gè)矩陣的乘積MatrixVectorMultiply 計(jì)算一個(gè)矩陣和一個(gè)列向量的乘積VectorMatrixMultiply 計(jì)算一個(gè)行向量和一個(gè)矩陣的乘積MatrixPower 矩陣的冪MinimalPolynomial 構(gòu)造矩陣的**小多項(xiàng)式Minor 計(jì)算矩陣的子式Multiply 矩陣相乘Norm 計(jì)算矩陣或向量的p-范數(shù)MatrixNorm 計(jì)算矩陣的p-范數(shù)VectorNorm 計(jì)算向量的p-范數(shù)Normalize 向量正規(guī)化NullSpace 計(jì)算矩陣的零度零空間OuterProductMatrix 兩個(gè)向量的外積Permanent 方陣的不變量Pivot 矩陣元素的主元消去法PopovForm Popov 正規(guī)型科學(xué)計(jì)算軟件的應(yīng)用范圍廣泛,幾乎涵蓋了所有需要精確計(jì)算的領(lǐng)域。松江區(qū)質(zhì)量科學(xué)計(jì)算軟件24小時(shí)服務(wù)
應(yīng)用:適用于各種數(shù)學(xué)和科學(xué)領(lǐng)域的計(jì)算,如物理學(xué)、化學(xué)、工程學(xué)等。金山區(qū)挑選科學(xué)計(jì)算軟件設(shè)計(jì)
RootOf - 方程根的表示surd - 非主根函數(shù)roots - 一個(gè)多項(xiàng)式對一個(gè)變量的精確根turm, sturmseq - 多項(xiàng)式在區(qū)間上的實(shí)數(shù)根數(shù)和實(shí)根序列4.4 解方程eliminate - 消去一個(gè)方程組中的某些變量isolve - 求解方程的整數(shù)解solvefor - 求解一個(gè)方程組的一個(gè)或者多個(gè)變量isolate - 隔離一個(gè)方程左邊的一個(gè)子表達(dá)式singular - 尋找一個(gè)表達(dá)式的極點(diǎn)solve/identity - 求解包含屬性的表達(dá)式solve/ineqs - 求解不等式solve/linear - 求解線性方程組solve/radical - 求解含有未知量根式的方程金山區(qū)挑選科學(xué)計(jì)算軟件設(shè)計(jì)
甘茨軟件科技(上海)有限公司在同行業(yè)領(lǐng)域中,一直處在一個(gè)不斷銳意進(jìn)取,不斷制造創(chuàng)新的市場高度,多年以來致力于發(fā)展富有創(chuàng)新價(jià)值理念的產(chǎn)品標(biāo)準(zhǔn),在上海市等地區(qū)的數(shù)碼、電腦中始終保持良好的商業(yè)口碑,成績讓我們喜悅,但不會讓我們止步,殘酷的市場磨煉了我們堅(jiān)強(qiáng)不屈的意志,和諧溫馨的工作環(huán)境,富有營養(yǎng)的公司土壤滋養(yǎng)著我們不斷開拓創(chuàng)新,勇于進(jìn)取的無限潛力,甘茨軟件供應(yīng)攜手大家一起走向共同輝煌的未來,回首過去,我們不會因?yàn)槿〉昧艘稽c(diǎn)點(diǎn)成績而沾沾自喜,相反的是面對競爭越來越激烈的市場氛圍,我們更要明確自己的不足,做好迎接新挑戰(zhàn)的準(zhǔn)備,要不畏困難,激流勇進(jìn),以一個(gè)更嶄新的精神面貌迎接大家,共同走向輝煌回來!