3D打印鎢-錸合金(W-25Re)噴管可耐受3200℃高溫燃氣,較傳統鉬基合金壽命延長5倍。SpaceX的SuperDraco發動機采用SLM打印的Inconel 718燃燒室,內部集成500條微冷卻通道(直徑0.3mm),使比沖提升至290s。關鍵技術包括:① 使用500W近紅外激光(波長1070nm)增強鎢粉吸收率;② 基板預熱至1200℃減少熱應力;③ 氬-氫混合保護氣體抑制氧化。俄羅斯托木斯克理工大學開發的電子束懸浮熔煉技術,可直接在真空環境中打印純鎢部件,密度達99.98%,但成本為常規SLM的3倍。新型高熵合金粉末的開發為極端環境下的金屬3D打印提供了材料解決方案。杭州粉末咨詢
鈦合金是3D打印領域廣闊使用的金屬粉末之一,因其高的強度重量比、耐腐蝕性和生物相容性而備受青睞。通過選擇性激光熔化(SLM)技術,鈦合金粉末被逐層熔融成型,可制造復雜航空部件如渦輪葉片、發動機支架等。其致密度可達99.5%以上,力學性能接近鍛造材料。近年來,科研團隊通過優化粉末粒徑(15-45μm)和工藝參數(激光功率、掃描速度),進一步提升了零件的抗疲勞性能。此外,鈦合金在醫療植入物(如人工關節)領域的應用也推動了低氧含量(<0.1%)粉末的開發。江蘇鋁合金粉末廠家金屬粘結劑噴射成型技術(BJT)通過逐層粘接和后續燒結實現近凈成形制造。
AlSi10Mg鋁合金粉末在汽車和航天領域都掀起了輕量化革新。其密度為2.68g/cm3,通過電子束熔融(EBM)技術成型的散熱器、衛星支架等部件可減重30%-50%。研究發現,添加0.5%納米Zr顆粒可細化晶粒至5μm以下,明著提升抗拉強度至450MPa。全球帶領企業已推出低孔隙率(<0.2%)的改性鋁合金粉末,配合原位熱處理工藝使零件耐溫性突破200℃。但需注意鋁粉的高反應性需在惰性氣體環境中處理,粉末回收率控制在80%以上才能保證經濟性。
3D打印鋯合金(如Zircaloy-4)燃料組件包殼,可設計內部蜂窩結構,提升耐壓性和中子經濟性。美國西屋電氣通過EBM制造的核反應堆格架,抗蠕變性能提高50%,服役溫度上限從400℃升至600℃。此外,鎢銅復合部件用于聚變堆前列壁裝甲,銅基體快速導熱,鎢層耐受等離子體侵蝕。但核用材料需通過嚴苛輻照測試:打印件的氦脆敏感性比鍛件高20%,需通過熱等靜壓(HIP)和納米氧化物彌散強化(ODS)工藝優化。中廣核已建立全球較早3D打印核級部件認證體系。
液態金屬(鎵銦錫合金)3D打印技術通過微注射成型制造可拉伸電路,導電率3×10? S/m,拉伸率超200%。美國卡內基梅隆大學開發的直寫式打印系統,可在彈性體基底上直接沉積液態金屬導線(線寬50μm),用于柔性傳感器陣列。另一突破是納米銀漿打印:燒結溫度從300℃降至150℃,兼容PET基板,電阻率2.5μΩ·cm。挑戰包括:① 液態金屬的高表面張力需低粘度改性劑(如鹽酸處理);② 納米銀的氧化問題需惰性氣體封裝。韓國三星已實現5G天線金屬網格的3D打印量產,成本降低40%。
鈦合金粉末因其優異的生物相容性,成為醫療領域3D打印骨科植入物的先選材料。杭州粉末咨詢
3D打印金屬粉末的制備是技術鏈的關鍵環節,主要依賴霧化法。氣霧化(GA)和水霧化(WA)是主流技術:氣霧化通過高壓惰性氣體(如氬氣)將熔融金屬液流破碎成微小液滴,快速冷卻后形成高球形度粉末,氧含量低,適用于鈦合金、鎳基高溫合金等高活性材料;水霧化則成本更低,但粉末形狀不規則,需后續處理。近年等離子旋轉電極霧化(PREP)技術興起,通過離心力甩出液滴,粉末純凈度更高,但產能受限。粉末粒徑通常控制在15-53μm,需通過篩分和氣流分級確保均勻性,以滿足不同打印設備(如SLM、EBM)的鋪粉要求。杭州粉末咨詢