選擇使用工研所的QPQ表面復合處理技術處理后,材料硬度明顯提高,增強零件的耐磨性和抗變形能力。QPQ工藝形成的氮化物層增強了材料的耐腐蝕性,使工件表面更好地抵抗磨損,延長使用壽命。該工藝在處理過程中不會引起工件發生形變,確保了處理后工件尺寸的精確性和穩定性。此外,QPQ處理技術的效率極高,整個處理流程緊湊且高效,極大地縮短了生產周期。同時,該技術還省去了傳統工藝中必需的拋光步驟,不僅降低了生產成本,還避免了拋光過程中可能引入的二次污染或損傷。這些優勢使得QPQ技術在許多行業中得到廣泛應用,包括鏈條行業、汽車制造和模具修復等領域。與其他傳統的表面處理方法相比,QPQ工藝展現出了諸多無可比擬的優勢。QPQ表面處理可以提高刀具的抗疲勞性能。凸輪軸QPQ鹽霧
通常,我們采用中性鹽霧試驗來評估零件的防腐蝕性能,這一測試方法能夠模擬零件在潮濕、含鹽環境中的耐腐蝕表現。在標準鹽霧實驗環境中,氯化鈉作為主要的鹽類成分,扮演著至關重要的角色。氯化鈉是一種強電解質,具有極強的吸濕性,一旦與水接觸,便會迅速且完全地電離為氯離子和鈉離子。鹽霧對金屬材料表面的腐蝕過程,實質上是氯離子發揮其強烈的穿透能力所致。由于氯離子的半徑相對較小,它能夠輕易地穿透金屬表面的氧化層或保護層,進而與內部的金屬基體發生電化學反應。這一反應會逐步侵蝕金屬,導致金屬材料表面的破壞。中性鹽霧試驗正是通過模擬這種環境,來檢測零件在長時間暴露于鹽霧中的耐腐蝕性能,從而確保零件在實際使用中的耐久性和可靠性。新能源QPQ淬火經過QPQ表面處理的刀具具有更好的切削表面質量。
成都工具研究所在原有QPQ技術基礎上開發了深層QPQ技術,化合物層深度更大,由原有的15~20μm增加到30~40μm以上。該技術可明顯提高材料的力學性能和抗蝕性。與其他表面處理方法相比,工件具有更高的耐疲勞強度,能夠明顯提高工件的耐磨性能。工件表面硬度得到提升,提高了工件的耐用性和使用壽命,且具有更高的耐腐蝕性。QPQ處理能夠保持尺寸穩定,與其他表面處理方法相比,QPQ處理對零部件尺寸變化的影響較小,有利于保持高精度要求。
工研所的QPQ處理技術,是一種創新的金屬鹽浴表面強化改性技術。它通過將金屬置于兩種具有不同性質的低溫熔融鹽浴中進行復合處理,促使多種有益元素同時滲入金屬表面,形成獨特的復合滲層。這一滲層由致密的氧化膜、牢固的化合物層以及深入的擴散層共同構成,實現了對金屬表面的整體強化改性。尤為值得一提的是,QPQ技術的全工藝過程綠色環保,無任何有害物質排放,完全符合現代工業的綠色生產要求。與傳統的單一熱處理技術和表面防護技術相比,QPQ技術能夠同時、大幅度地提升金屬表面的耐磨性和耐蝕性,從而明顯延長金屬制品的使用壽命,提高其綜合性能。這一獨特的技術優勢,使得QPQ技術在金屬表面處理領域展現出了廣闊的應用前景。QPQ表面處理可以提高刀具的抗磨損性能。
產品經工研所QPQ處理后,在表面會形成一層氮化層,為保證產品質量合格,會對同材質同狀態的樣塊或產品進行滲層深度、致密度以及滲氮層氮化物級別判定的金相檢測,通常有金相法和顯微硬度法來確定擴散層的深度,金相法相較于硬度法簡單便捷,對于鑄鐵件、碳鋼件、合金鋼鐵件等材料使用硒酸腐蝕,對于不銹鋼,模具鋼等材料使用硝酸酒精腐蝕劑腐蝕。在顯微鏡下觀察,從表面計算到針狀氮化物終了處或與心部有明顯差別處作為總滲層深度,除去化合物深度即為擴散層深度。成都工具研究所有限公司的QPQ表面處理技術可以提高刀具的加工精度。凸輪軸QPQ鹽霧
QPQ表面處理可以改善刀具的切削表面粗糙度。凸輪軸QPQ鹽霧
在金屬成型領域,壓鑄模、擠壓模、鍛模以及拉伸模等模具扮演著至關重要的角色。這些模具不僅要求具備很高的強度,以抵抗成型過程中的巨大壓力,還要求具有良好的抗變形能力和抗磨損能力,確保成型件的精度和質量。為了達到這些要求,模具在生產過程中必須經歷嚴格的熱處理,以增強其整體強度。然而,為了進一步延長模具的使用壽命,熱處理之后還需進行QPQ處理。工研所的QPQ處理技術通過特定的化學反應,在模具表面形成一層厚度超過10微米的化合物層。這層化合物層主要由氮化物、碳化物等硬質物質構成,極大地提高了模具表面的耐磨性,減少了因摩擦而產生的磨損。同時,化合物層以下的擴散層通過元素擴散增強了材料的微觀結構,從而提高了模具的疲勞強度。得益于QPQ處理帶來的這些明顯優勢,模具的使用壽命通常可以延長2倍以上。這不僅降低了生產成本,還提高了生產效率和產品質量,為金屬成型行業帶來了明顯的效益。凸輪軸QPQ鹽霧