旋轉透射棱鏡:棱鏡激光雷達也稱為雙楔形棱鏡激光雷達,內部包括兩個楔形棱鏡,激光在通過頭一個楔形棱鏡后發生一次偏轉,通過第二個楔形棱鏡后再一次發生偏轉。控制兩面棱鏡的相對轉速便可以控制激光束的掃描形態。棱鏡激光雷達累積的掃描圖案形狀像花瓣,中心點掃描次數密集,圓的邊緣則相對稀疏,掃描時間持久才能豐富圖像,所以需要加入多個激光雷達共工作,以便達到更高的效果。棱鏡可以通過增加激光線束和功率實現高精與長距離探測,但結構復雜、體積更難控制,軸承與襯套磨損風險較大。激光雷達的分辨率高,能夠捕捉到細微的目標特征。浙江地面激光雷達廠商
脈沖同步(PPS),脈沖同步通過同步信號線實現數據同步。GPS同步(PPS+UTC),通過同步信號線和 UTC 時間(GPS 時間)實現數據同步。然后我們從 LiDAR 硬件得到一串數據包,需要過一次驅動才能將其解析成點云通用的格式,如 ROSMSG 或者 pcl 點云格式,以目前較普遍的旋轉式激光雷達的數據為例,其數據為 10hz,即 LiDAR 在 0.1s 時間內轉一圈,并將硬件得到的數據按照不同角度切成不同的 packet,以下便是一個 packet 數據包定義示意圖。每一個 packet 包含了當前扇區所有點的數據,包含每個點的時間戳,每個點的 xyz 數據,每個點的發射強度,每個點來自的激光發射機的 id 等信息。江蘇多線激光雷達制造激光雷達以其高分辨率成像能力,在無人機地形測繪中發揮著重要作用。
對于激光的波長,目前主要使用使用波長為905nm和1550nm的激光發射器,波長為1550nm的光線不容易在人眼液體中傳輸。故1550nm可在保證安全的前提下較大程度上提高發射功率。大功率能得到更遠的探測距離,長波長也能提高抗干擾能力。但是1550nm激光需使用InGaAs,目前量產困難。故當前更多使用Si材質量產905nm的LiDAR。通過限制功率和脈沖時間來保證安全性。技術原理,激光雷達探測的具體技術可以分為TOF飛行時間法與相干探測方法。其中ToF方法可以進一步區分為iToF和dToF方法;飛行時間(ToF)探測方法,通過直接計算發射及接收電磁波的時間差測量被測目標的距離;相干探測方法(如:FMCW),通過測量發射電磁波與返回電磁波的頻率變化解調出被測目標的距離及速度。
激光雷達能夠準確輸出障礙物的大小和距離,通過算法對點云數據的處理可以輸出障礙物的3D框,如:3D行人檢測、3D車輛檢測等;亦可進行車道線檢測、場景分割等任務。除了障礙物感知,激光雷達還可以用來制作高精度地圖。地圖采集過程中,激光雷達每隔一小段時間輸出一幀點云數據,這些點云數據包含環境的準確三維信息,通過把這些點云數據做拼接,就可以得到該區域的高精度地圖。在定位方面,智能車在行駛過程中利用當前激光雷達采集的點云數據幀和高精度地圖做匹配,可以獲取智能車的位置。激光雷達的高精度三維成像為地質勘探提供了有力支持。
MEMS激光雷達模組,光學相控陣式(OPA),相控陣發射器由若干發射接收單元組成陣列,通過改變加載在不同單元的電壓,進而改變不同單元發射光波特性,實現對每個單元光波的單獨控制,通過調節從每個相控單元輻射出的光波之間的相位關系,在設定方向上產生互相加強的干涉從而實現強度高光束,而其他方向上從各個單元射出的光波彼此相消。組成相控陣的各相控單元在程序的控制下可使一束或多束強度高光束按設計指向實現空域掃描。但光學相控陣的制造工藝難度較大,這是由于要求陣列單元尺寸必需不大于半個波長,普通目前激光雷達的任務波長均在1微米左右,這就意味著陣列單元的尺寸必需不大于500納米。而且陣列數越多,陣列單元的尺寸越小,能量越往主瓣集中,這就對加工精度要求更高。此外,材料選擇也是十分關鍵的要素。激光雷達用于林業監測樹木參數,為森林資源評估提供助力。四探頭激光雷達價格
覽沃 Mid - 360 作為新物種,讓移動機器人在多樣場景精確感知。浙江地面激光雷達廠商
20世紀90年代后期,全球定位系統及慣性導航系統的發展使得激光掃描過程中的精確即時定位定姿成為可能。1990年德國Stuttgart大學Ackermann教授領銜研制的世界上頭一個激光斷面測量系統,這一系統成功將激光掃描技術與即時定位定姿系統結合,形成機載激光掃描儀。1993年,德國出現初個商用機載激光雷達系統TopScanALTM1020。1995年,機載激光雷達設備實現商業化生產。此后,機載激光雷達技術成為了森林資源調查的重要補充手段。普遍應用于快速獲取大范圍森林結構信息,如樹木定位、樹高計算、樹冠體積估測等,同時還為森林生態研究、森林經營管理提供垂直結構分層、碳儲量、枯枝落葉易燃物數量等參數估算信息。浙江地面激光雷達廠商