4.2.3根據各時頻信號互相關系數、能量分布曲線特征參量(互相關系數、最大值、平均值、峰度、偏度)、ATF圖譜特征參量(六等分區間均值)、總諧波畸變率、基頻信號能量比等狀態量,采用深度學習算法,自動判斷變壓器運行狀態及機械故障類型。
4.2.4結合變壓器的帶電監測、智能巡檢以及其他在線監測狀態量,進行數據的多參量融合分析,形成基于多源數據的故障預警機制,多參量融合分析不僅提高了識別故障的準確性,而且還能**降低因單個參量判別故障帶來的誤報。例如,對于變壓器疑似問題地診斷可結合負荷、損耗、繞組機械振動信號、油溫、以及歷史電流電壓情況分析,在監測到變壓器地聲紋振動頻譜時,GZAFV-01系統的操控及監測數據分析系統可以自動去查詢變壓器地歷史電流和電壓信號,如果發現在某段時期確實有大電流沖擊,可給出預警:變壓器可能存在繞組變形地異常。 杭州國洲電力科技有限公司振動聲學指紋在線監測技術的用戶操作指南。斷路器振動聲學指紋在線監測系統組件
四、GZAFV-01系統的功能特點4.1基本功能4.1.1支持多通道信號同步實時地采集、顯示及分析。4.1.2具有時間觸發和電流觸發功能,可手動選擇信號觸發方式。4.1.3可將任意兩次測量的圖譜進行相似度分析,并自動計算圖譜的重合度。4.1.4具有先進的能量譜分析功能,并能自動識別能量譜比較大的高低頻能量頻率。4.1.5獨有的信號處理功能,生成聲紋振動信號ATF圖譜(系我公司***軟著權的《變壓器有載分解開關及繞組振動測試軟件V1.0》中的**核心算法),更直觀、更便捷分析OLTC及繞組和鐵芯的運行狀態。校驗振動聲學指紋在線監測監測廠家電話杭州國洲電力科技有限公司振動聲學指紋在線監測功能的故障診斷能力。
GIS及敞開式的隔離開關監測功能特性◆采用加速度傳感器及電流傳感器監測隔離開關聲紋振動及電機電流信號。◆具有比對分析功能:可將現測與標準/歷史的監測數據進行橫向/縱向比對分析。◆具有診斷分析功能:可對隔離開關狀態進行診斷,并上傳原始數據及分析結果。◆具有斷電不丟失存儲數據、復電自啟動、自復位的功能,可連續監測、存儲及導出功能,可夠存儲1000次以上的操作數據,并具備批量處理數據功能。◆具備聲紋振動及電機電流信號波形、包絡分析、時頻圖譜等展示功能。◆自動提取動/靜觸頭的分/合閘動作時間、電機峰值電流、電機電流的燃弧時間及抖動高幅值關鍵特征、聲紋振動脈動關鍵特征等參量。◆智能分析:依托于我公司建立的海量典型故障案例的數據庫,包絡分析后可快速實現歷史信號重合度比對開展智能分析,更直觀、快速地判斷電力設備運行狀態。為量化信號重合度比對,GZAFV-01系統引入互相關系數的計算,當實時采集信號包絡曲線與正常狀態包絡曲線的互相關系數:接近1時,被測設備是接近正常狀態。接近0時,被測設備是可能存在故障的異常狀態。
3.2.1感知層的傳感器GZAFV-01系統的感知層如上圖3.1所示,由IED/主機、6路聲紋振動傳感器、1路電流傳感器等構成,聲紋振動傳感器集成電荷放大器,將聲紋振動信號轉換成與之成正比的電壓信號;電流傳感器采用微型卡扣結構,便于現場安裝。各傳感器外觀及參數如下表1所示。◆3路聲紋振動傳感器采集取OLTC振動信號,通過固定底座安裝在變壓器外壁,安裝位置選取平行于OLTC的垂直傳動桿方向,且盡量靠近OLTC的觸頭組處。◆1路電流傳感器采集OLTC驅動電機電流信號,安裝于OLTC驅動電機電源線處。◆3路聲紋振動傳感器采集變壓器繞組及鐵芯聲紋振動信號,安裝位置選取于上夾件底部、非冷卻器側油箱表面中部、油箱頂部中心點。為保持監測點的同一性,便于后期監測數據的時間軸線比對,所有聲紋振動傳感器底座長期固定在變壓器外壁上。安裝示意圖如下圖3.2所示。(備注:傳感器安裝的數量及位置可根據被測設備的監測需求而靈活調整)杭州國洲電力科技有限公司振動聲學指紋在線監測技術系統的模塊化設計。
綜上所述,采用聲紋振動法監測變壓器OLTC、繞組及鐵芯的狀態,適用于帶電監測/在線監測,與變壓器無電氣連接而不影響正常運行,有安裝方便、安全、可靠等優點。我公司結合多年技術預研儲備及現場技術服務經驗,成功研制出GZAFV-01型聲紋監測系統,既有固定安裝的長期在線監測式,也有便攜式的帶電監測系統及可移動的在線重癥監護式。GZAFV-01系統由聲紋振動傳感器、驅動電機電流傳感器、數據采集裝置(在線監測式:IED,便攜/手持式:主機;下文皆用IED/主機簡稱)、云服務器、通訊單元及供電單元構成;操控及監測數據分析軟件結合包絡分析、重合度分析、小波分析、能量分布矩陣、時域信號頻譜分析等多種算法,并提取故障診斷特征參量,在線狀態下實現變壓器OLTC、繞組及鐵芯的健康態勢評價與故障類型診斷。杭州國洲電力科技有限公司振動聲學指紋在線監測功能的遠程監控能力。國洲電力振動聲學指紋在線監測監測故障
杭州國洲電力科技有限公司的企業愿景與使命。斷路器振動聲學指紋在線監測系統組件
3.3.1.3能量分布曲線基于小波變換的聲紋振動信號多分辨率分析結果如下圖3.8所示。原始信號經8層分解后產生第8層的近似分量和第1層至第8層的詳細分量,計算各層詳細分量信號能量,可獲得信號能量分布曲線。比對正常狀態與異常狀態能量分布曲線,可判斷OLTC運行狀態,并提取互相關系數、最大值、平均值、峰度、偏度作為狀態診斷特征參量。下圖3.7為正常與異常狀態的聲紋振動信號能量分布曲線比對。
3.3.1.4時頻能量分布矩陣(ATF圖譜)獲取聲紋振動信號的時頻能量分布矩陣,同時反映原始信號時域、頻域特性及能量分布。將信號時頻分布矩陣分為6個區間,計算各區間平均值作為特征參量,用于OLTC正常狀態與異常狀態比對。下圖3.9為正常狀態下聲紋振動信號時頻能量矩陣。 斷路器振動聲學指紋在線監測系統組件