熱紅外顯微鏡(Thermal EMMI)技術,作為半導體失效分析領域的關鍵手段,通過捕捉器件內部產生的熱輻射,實現失效點的精細定位。它憑借對微觀熱信號的高靈敏度探測,成為解析半導體故障的 “火眼金睛”。然而,隨著半導體技術不斷升級,器件正朝著超精細圖案制程與低供電電壓方向快速演進:線寬進入納米級,供電電壓降至 1V 以下。這使得失效點(如微小短路、漏電流區域)產生的熱量急劇減少,其輻射的紅外線信號強度降至傳統檢測閾值邊緣,疊加芯片復雜結構的背景輻射干擾,信號提取難度呈指數級上升。熱紅外顯微鏡的動態功耗分析功能,同步記錄 100MHz 高頻信號下的熱響應曲線。工業檢測熱紅外顯微鏡大概價格多少 ...
致晟光電熱紅外顯微鏡采用高性能InSb(銦銻)探測器,用于中波紅外波段(3–5 μm)的熱輻射信號捕捉。InSb材料具有優異的光電轉換效率和極低的本征噪聲,在制冷條件下可實現高達nW級的熱靈敏度和優于20mK的溫度分辨率,適用于高精度、非接觸式熱成像分析。該探測器在熱紅外顯微系統中的應用,提升了空間分辨率(可達微米量級)與溫度響應線性度,使其能夠對半導體器件、微電子系統中的局部發熱缺陷、熱點遷移和瞬態熱行為進行精細刻畫。配合致晟光電自主開發的高數值孔徑光學系統與穩態熱控平臺,InSb探測器可在多物理場耦合背景下實現高時空分辨的熱場成像,是先進電子器件失效分析、電熱耦合行為研究及材料熱特性評價中...
無損熱紅外顯微鏡的非破壞性分析(NDA)技術,為失效分析提供了 “保全樣品” 的重要手段。它在不損傷高價值樣品的前提下,捕捉隱性熱信號以定位內部缺陷,既保障了分析的準確性,又為后續驗證、復盤保留了完整樣本,讓失效分析從 “找到問題” 到 “解決問題” 的閉環更高效、更可靠。 相較于無損熱紅外顯微鏡的非侵入式檢測,這些有損分析方法雖能獲取內部結構信息,但會破壞樣品完整性,更適合無需保留樣品的分析場景,與無損分析形成互補。 熱紅外顯微鏡可實時監測電子設備運行中的熱變化,預防過熱故障 。制造熱紅外顯微鏡售價 熱點區域對應高溫部位,可能是發熱源或故障點;等溫線連接溫度相同點,能直觀呈現溫度...
致晟光電熱紅外顯微鏡采用高性能InSb(銦銻)探測器,用于中波紅外波段(3–5 μm)的熱輻射信號捕捉。InSb材料具有優異的光電轉換效率和極低的本征噪聲,在制冷條件下可實現高達nW級的熱靈敏度和優于20mK的溫度分辨率,適用于高精度、非接觸式熱成像分析。該探測器在熱紅外顯微系統中的應用,提升了空間分辨率(可達微米量級)與溫度響應線性度,使其能夠對半導體器件、微電子系統中的局部發熱缺陷、熱點遷移和瞬態熱行為進行精細刻畫。配合致晟光電自主開發的高數值孔徑光學系統與穩態熱控平臺,InSb探測器可在多物理場耦合背景下實現高時空分辨的熱場成像,是先進電子器件失效分析、電熱耦合行為研究及材料熱特性評價中...
車規級芯片作為汽車電子系統的重心,其可靠性直接關系到汽車的安全運行,失效分析是對提升芯片質量、保障行車安全意義重大。在車規級芯片失效分析中,熱紅外顯微鏡發揮著關鍵作用。芯片失效常伴隨異常發熱,通過熱紅外顯微鏡分析其溫度分布,能定位失效相關的熱點區域。比如,芯片內部電路短路、元器件老化等故障,會導致局部溫度驟升形成明顯熱點。從而快速定位潛在的故障點,為功率模塊的失效分析提供了強有力的工具。可以更好的幫助車企優化芯片良率與安全性。在高低溫循環(-40℃~125℃)中監測車載功率模塊、傳感器的熱疲勞退化。熱紅外顯微鏡分析 致晟光電自主研發的熱紅外顯微鏡 Thermal EMMI P系列,是電子工業...
致晟光電熱紅外顯微鏡(Thermal EMMI)系列中的 RTTLIT P20 實時瞬態鎖相熱分析系統,采用鎖相熱成像(Lock-inThermography)技術,通過調制電信號提升特征分辨率與靈敏度,并結合軟件算法優化信噪比,實現顯微成像下超高靈敏度的熱信號測量。RTTLIT P20搭載100Hz高頻深制冷型超高靈敏度顯微熱紅外成像探測器,測溫靈敏度達0.1mK,顯微分辨率低至2μm,具備良好的檢測靈敏度與測試效能。該系統重點應用于對測溫精度和顯微分辨率要求嚴苛的場景,包括半導體器件、晶圓、集成電路、IGBT、功率模塊、第三代半導體、LED及microLED等的失效分析,是電子集成電路與半...
熱紅外顯微鏡(Thermal EMMI)的突出優勢二: 與傳統接觸式檢測方法相比,熱紅外顯微鏡的非接觸式檢測優勢更勝——無需與被測設備直接物理接觸,從根本上規避了傳統檢測中因探針壓力、靜電放電等因素對設備造成的損傷風險,這對精密電子元件與高精度設備的檢測尤為關鍵。在接觸式檢測場景中,探針接觸產生的機械應力可能導致芯片焊點形變或線路微損傷,而靜電放電(ESD)更可能直接擊穿敏感半導體器件。 相比之下,熱紅外顯微鏡通過捕捉設備運行時的熱輻射信號實現非侵入式檢測,不僅能在設備正常工作狀態下獲取實時數據,更避免了因接觸干擾導致的檢測誤差,大幅提升了檢測過程的安全性與結果可靠性。這種非接...
熱點區域對應高溫部位,可能是發熱源或故障點;等溫線連接溫度相同點,能直觀呈現溫度梯度與熱量傳導規律。目前市面上多數設備受紅外波長及探測器性能限制,普遍存在熱點分散、噪點多的問題,導致發熱區域定位不準,圖像對比度和清晰度下降,影響溫度分布判斷的準確性。 而我方設備優勢是設備抗干擾能力強,可有效減少外界環境及內部器件噪聲影響,保障圖像穩定可靠;等溫線明顯,能清晰展現溫度相同區域,便于快速掌握溫度梯度與熱傳導情況,提升熱特性分析精度;成像效果大幅提升,具備更高的空間分辨率、溫度分辨率及對比度,可清晰呈現細微細節,為分析提供高質量的圖像支持。 熱紅外顯微鏡能透過硅片或封裝材料,對半導體芯片內...
在失效分析中,零成本簡單且常用的三個方法基于“觀察-驗證-定位”的基本邏輯,無需復雜設備即可快速縮小失效原因范圍: 1.外觀檢查法(VisualInspection) 2.功能復現與對比法(FunctionReproduction&Comparison) 3.導通/通路檢查法(ContinuityCheck) 但當失效分析需要進階到微觀熱行為、隱性感官缺陷或材料/結構內部異常的層面時,熱紅外顯微鏡(Thermal EMMI) 能成為關鍵工具,與基礎方法結合形成更深度的分析邏輯。在進階失效分析中,熱紅外顯微鏡可捕捉微觀熱分布,鎖定電子元件微區過熱(如虛焊、短路)、材料...
熱紅外顯微鏡(Thermal EMMI)技術,作為半導體失效分析領域的關鍵手段,通過捕捉器件內部產生的熱輻射,實現失效點的精細定位。它憑借對微觀熱信號的高靈敏度探測,成為解析半導體故障的 “火眼金睛”。然而,隨著半導體技術不斷升級,器件正朝著超精細圖案制程與低供電電壓方向快速演進:線寬進入納米級,供電電壓降至 1V 以下。這使得失效點(如微小短路、漏電流區域)產生的熱量急劇減少,其輻射的紅外線信號強度降至傳統檢測閾值邊緣,疊加芯片復雜結構的背景輻射干擾,信號提取難度呈指數級上升。快速鎖定 PCB 板上因線路搭接、元件損壞導致的熱點,尤其是隱藏在多層板內部的短路點。高分辨率熱紅外顯微鏡批量定制現...
近年來,非制冷熱紅外顯微鏡價格呈下行趨勢。在技術進步層面,國內紅外焦平面陣列芯片技術不斷突破,像元間距縮小、陣列規模擴大,從早期的 17μm、384×288 發展到如今主流的 12μm 像元,1280 ×1 024、1920 × 1080 陣列規模實現量產,如大立科技等企業推動技術升級,提升生產效率,降低單臺設備成本。同時,國產化進程加速,多家本土廠商崛起,如我司推出非制冷型鎖相紅外顯微鏡,打破進口壟斷格局,市場競爭加劇,促使產品價格更加親民。熱紅外顯微鏡在電子產品研發階段,輔助優化熱管理方案 。工業檢測熱紅外顯微鏡選購指南通過大量海量熱圖像數據,催生出更智能的數據分析手段。借助深度學習算法,...
熱紅外顯微鏡是一種融合紅外熱成像與顯微技術的精密檢測工具,通過捕捉物體表面及內部的熱輻射信號,實現微觀尺度下的溫度分布可視化分析。其**原理基于黑體輻射定律——任何溫度高于***零度的物體都會發射紅外電磁波,且溫度與輻射強度呈正相關,而顯微鏡系統則賦予其微米級的空間分辨率,可精細定位電子器件、材料界面等微觀結構中的異常熱點。 在電子工業中,熱紅外顯微鏡常用于半導體芯片的失效定位 —— 例如透過封裝材料檢測內部金屬層微短路、晶體管熱斑;在功率器件領域,可分析 IGBT 模塊的熱阻分布、SiC 器件的高溫可靠性;在 PCB 板級檢測中,能識別高密度線路的功耗異常區,輔助散熱設計優化。此外...
在微觀熱信號檢測領域,熱發射顯微鏡作為經典失效分析工具,為半導體與材料研究提供了基礎支撐。致晟光電的熱紅外顯微鏡,并非簡單的名稱更迭,而是由技術工程師團隊在傳統熱發射顯微鏡原理上,歷經多代技術創新與功能迭代逐步演變進化而來。這一過程中,團隊針對傳統設備在視野局限、信號靈敏度、分析尺度等方面的痛點,通過光學系統重構、信號處理算法升級、檢測維度拓展等創新,重新定義、形成了更適應現代微觀熱分析需求的技術體系。熱紅外顯微鏡可模擬器件實際工作溫度測試,為產品性能評估提供真實有效數據。檢測用熱紅外顯微鏡聯系人ThermalEMMI(熱紅外顯微鏡)是一種先進的非破壞性檢測技術,主要用于精細定位電子設備中的熱...
制冷熱紅外顯微鏡因中樞部件精密(如深制冷探測器、鎖相熱成像模塊),故障維修對專業性要求極高,優先建議聯系原廠。原廠掌握設備重要技術與專屬備件(如制冷型MCT探測器、高頻信號調制組件),能定位深制冷系統泄漏、鎖相算法異常等復雜問題,且維修后可保障性能參數(如0.1mK靈敏度、2μm分辨率)恢復至出廠標準,尤其適合半導體晶圓檢測等場景的精密設備。若追求更快響應速度,國產設備廠商是高效選擇。國內廠商在本土服務網絡布局密集,能快速上門處理機械結構松動、軟件算法適配等常見故障,且備件供應鏈短(如非制冷探測器、光學鏡頭等通用部件),維修周期可縮短30%-50%。對于PCB失效分析等場景的設備,國產廠商的本...
熱紅外顯微鏡在半導體IC裸芯片熱檢測中發揮著關鍵作用。對于半導體IC裸芯片而言,其內部結構精密且集成度高,微小的熱異常都可能影響芯片性能甚至導致失效,因此熱檢測至關重要。熱紅外顯微鏡能夠非接觸式地對裸芯片進行熱分布成像與分析,清晰捕捉芯片工作時的溫度變化情況。它可以定位芯片上的熱點區域,這些熱點往往是由電路設計缺陷、局部電流過大或器件老化等問題引起的。通過對熱點的檢測和分析,工程師能及時發現芯片潛在的故障風險,為優化芯片設計、改進制造工藝提供重要依據。同時,該顯微鏡還能測量裸芯片內部關鍵半導體結點的溫度,也就是結溫。結溫是評估芯片性能和可靠性的重要參數,過高的結溫會縮短芯片壽命,影響其穩定性。...
在失效分析的有損分析中,打開封裝是常見操作,通常有三種方法。全剝離法會將集成電路完全損壞,留下完整的芯片內部電路。但這種方法會破壞內部電路和引線,導致無法進行電動態分析,適用于需觀察內部電路靜態結構的場景。局部去除法通過特定手段去除部分封裝,優點是開封過程不會損壞內部電路和引線,開封后仍可進行電動態分析,能為失效分析提供更豐富的動態數據。自動法則是利用硫酸噴射實現局部去除,自動化操作可提高效率和精度,不過同樣屬于破壞性處理,會對樣品造成一定程度的損傷。 熱紅外顯微鏡能透過硅片或封裝材料,對半導體芯片內部熱缺陷進行非接觸式檢測。科研用熱紅外顯微鏡成像儀 無損熱紅外顯微鏡的非破壞性分...
從傳統熱發射顯微鏡到熱紅外顯微鏡的演變,是其技術團隊對微觀熱分析需求的深度洞察與持續創新的結果。它既延續了通過紅外熱輻射解析熱行為的原理,又通過全尺度觀測、高靈敏度檢測、場景化分析等創新,突破了傳統技術的邊界。如今,這款設備已成為半導體失效分析、新材料熱特性研究、精密器件研發等領域的專業工具,為行業在微觀熱管控、缺陷排查、性能優化等方面提供了更高效的技術支撐,推動微觀熱分析從 “可見” 向 “可知”“可控” 邁進。熱紅外顯微鏡的 AI 智能分析模塊,自動標記異常熱斑并匹配歷史失效數據庫。IC熱紅外顯微鏡對比致晟光電推出的多功能顯微系統,創新實現熱紅外與微光顯微鏡的集成設計,搭配靈活可選的制冷/...
選擇熱紅外顯微鏡(Thermal EMMI) 設備時,需緊密圍繞實際應用需求進行綜合評估。若檢測對象為半導體芯片、晶圓,應重點關注設備的空間分辨率(推薦≤1μm)和溫度靈敏度(≤0.01℃);針對 3D 封裝器件,支持鎖相熱成像技術的設備能更好地實現深度定位;而 PCB/PCBA 檢測,則需要兼顧大視野與高精度掃描能力。在技術指標層面,InSb 材質的探測器靈敏度出色,適合半導體缺陷檢測,非制冷型氧化釩探測器雖成本較低,但分辨率相對有限;鎖相熱成像技術可提升信噪比,并實現 3D 空間的深度定位;同時,偏置系統的電壓電流范圍、EMMI 與熱成像融合功能以及 AI 輔助分析能力,也都是衡量設備性能...
車規級芯片作為汽車電子系統的重心,其可靠性直接關系到汽車的安全運行,失效分析是對提升芯片質量、保障行車安全意義重大。在車規級芯片失效分析中,熱紅外顯微鏡發揮著關鍵作用。芯片失效常伴隨異常發熱,通過熱紅外顯微鏡分析其溫度分布,能定位失效相關的熱點區域。比如,芯片內部電路短路、元器件老化等故障,會導致局部溫度驟升形成明顯熱點。從而快速定位潛在的故障點,為功率模塊的失效分析提供了強有力的工具。可以更好的幫助車企優化芯片良率與安全性。熱紅外顯微鏡突破傳統限制,以超分辨率清晰呈現芯片內部熱分布細節 。無損熱紅外顯微鏡應用 無損熱紅外顯微鏡的非破壞性分析(NDA)技術,為失效分析提供了 “保全樣品” 的...
熱紅外顯微鏡在半導體IC裸芯片熱檢測中發揮著關鍵作用。對于半導體IC裸芯片而言,其內部結構精密且集成度高,微小的熱異常都可能影響芯片性能甚至導致失效,因此熱檢測至關重要。熱紅外顯微鏡能夠非接觸式地對裸芯片進行熱分布成像與分析,清晰捕捉芯片工作時的溫度變化情況。它可以定位芯片上的熱點區域,這些熱點往往是由電路設計缺陷、局部電流過大或器件老化等問題引起的。通過對熱點的檢測和分析,工程師能及時發現芯片潛在的故障風險,為優化芯片設計、改進制造工藝提供重要依據。同時,該顯微鏡還能測量裸芯片內部關鍵半導體結點的溫度,也就是結溫。結溫是評估芯片性能和可靠性的重要參數,過高的結溫會縮短芯片壽命,影響其穩定性。...
熱紅外顯微鏡(Thermal EMMI )技術不僅可實現電子設備的故障精細定位,更在性能評估、熱管理優化及可靠性分析等領域展現獨特價值。通過高分辨率熱成像捕捉設備熱點分布圖譜,工程師能深度解析器件熱傳導特性,以此為依據優化散熱結構設計,有效提升設備運行穩定性與使用壽命。此外,該技術可實時監測線路功耗分布與異常發熱區域,建立動態熱特征數據庫,為線路故障的早期預警與預防性維護提供數據支撐,從根本上去降低潛在失效風險。熱紅外顯微鏡利用其高分辨率,觀察半導體制造過程中的熱工藝缺陷 。實時成像熱紅外顯微鏡技術參數 熱紅外顯微鏡(Thermal EMMI)的突出優勢一: 熱紅外顯微鏡(Therma...
RTTLITP20 熱紅外顯微鏡憑借多元光學物鏡配置,構建從宏觀到納米級的全尺度熱分析能力,靈活適配多樣檢測需求。Micro廣角鏡頭可快速覆蓋大尺寸樣品整體熱分布,如整塊電路板、大型模組的散熱趨勢,高效完成初步篩查;0.13~0.3x變焦鏡頭通過連續倍率調節,適配芯片封裝體、傳感器陣列等中等尺度器件熱分析,兼顧整體熱場與局部細節;0.65X~0.75X變焦鏡頭提升分辨率,解析芯片內部功能單元熱交互,助力定位封裝散熱瓶頸;3x~4x變焦鏡頭深入微米級結構,呈現晶體管陣列、引線鍵合點等細微部位熱分布;8X~13X變焦鏡頭聚焦納米尺度,捕捉微小短路點、漏電流區域等納米級熱點的微弱熱信號,滿足先進...
熱紅外顯微鏡(Thermal EMMI) 也是科研與教學領域的利器,其設備能捕捉微觀世界的熱信號。它將紅外探測與顯微技術結合,呈現物體表面溫度分布,分辨率達微米級,可觀察半導體芯片熱點、電子器件熱分布等。非接觸式測量是其一大優勢,無需與被測物體直接接觸,避免了對樣品的干擾,適用于多種類型的樣品檢測。實時成像功能可追蹤動態熱變化,如材料相變、化學反應熱釋放。在高校,熱紅外顯微鏡助力多學科實驗;在企業,為產品研發和質量檢測提供支持,推動各領域創新突破。 熱紅外顯微鏡結合多模態檢測(THERMAL/EMMI/OBIRCH),實現熱 - 電信號協同分析定位復合缺陷。低溫熱熱紅外顯微鏡方案 致晟光...
熱紅外顯微鏡和紅外顯微鏡并非同一事物,二者是包含與被包含的關系。紅外顯微鏡是個廣義概念,涵蓋利用0.75-1000微米紅外光進行分析的設備,依波長分近、中、遠紅外等,通過樣品對紅外光的吸收、反射等特性分析化學成分,比如識別材料中的官能團,應用于材料科學、生物學等領域。而熱紅外顯微鏡是其分支,專注7-14微米的熱紅外波段,無需外部光源,直接探測樣品自身的熱輻射,依據黑體輻射定律生成溫度分布圖像,主要用于研究溫度分布與熱特性,像定位電子芯片的熱點、分析復合材料熱傳導均勻性等。前者側重成分分析,后者聚焦熱特性研究。熱紅外顯微鏡對電子元件進行無損熱檢測,保障元件完整性 。直銷熱紅外顯微鏡分析 熱紅外...
熱紅外顯微鏡(Thermal EMMI)的突出優勢一: 熱紅外顯微鏡(Thermal emmi )能夠檢測到極其微弱的熱輻射和光發射信號,其靈敏度通常可以達到微瓦甚至納瓦級別。同時,它還具有高分辨率的特點,能夠分辨出微小的熱點區域,分辨率可以達到微米甚至納米級別。具備極高的探測靈敏度,能夠捕捉微瓦級甚至納瓦級的熱輻射與光發射信號,適用于識別早期故障及微小異常。同時,該技術具有優異的空間分辨能力,能夠準確定位尺寸微小的熱點區域,其分辨率可達微米級,部分系統也已經可實現納米級識別。通過結合熱圖像與光發射信號分析,熱紅外顯微鏡為工程師提供了精細、直觀的診斷工具,大幅提升了故障排查與性能評估...
致晟光電——熱紅外顯微鏡在信號調制技術上的優化升級,以多頻率調制為突破點,構建了更精細的微觀熱信號解析體系。其通過精密算法控制電信號的頻率切換與幅度調節,使不同深度、不同材質的樣品區域產生差異化熱響應 —— 高頻信號可捕捉表層微米級熱點,低頻信號則能穿透材料識別內部隱性感熱缺陷,形成多維度熱特征圖譜。 這種動態調制方式,不僅將特征分辨率提升至納米級,更通過頻率匹配過濾環境噪聲與背景干擾,使檢測靈敏度較傳統單頻調制提高 3-5 倍,即使是 0.1mK 的微小溫度波動也能被捕捉。 熱紅外顯微鏡在 SiC/GaN 功率器件檢測中,量化評估襯底界面熱阻分布。什么是熱紅外顯微鏡24小時服務致晟...
ThermalEMMI(熱紅外顯微鏡)是一種先進的非破壞性檢測技術,主要用于精細定位電子設備中的熱點區域,這些區域通常與潛在的故障、缺陷或性能問題密切相關。該技術可在不破壞被測對象的前提下,捕捉電子元件在工作狀態下釋放的熱輻射與光信號,為工程師提供關鍵的故障診斷線索和性能分析依據。在諸如復雜集成電路、高性能半導體器件以及精密印制電路板(PCB)等電子組件中,ThermalEMMI能夠快速識別出異常發熱或發光的區域,幫助工程師迅速定位問題根源,從而及時采取有效的維修或優化措施。熱紅外顯微鏡利用其高分辨率,觀察半導體制造過程中的熱工藝缺陷 。潮安區熱紅外顯微鏡 無損熱紅外顯微鏡的非破壞性分析(N...
致晟光電熱紅外顯微鏡(Thermal EMMI)系列中的 RTTLIT P20 實時瞬態鎖相熱分析系統,采用鎖相熱成像(Lock-inThermography)技術,通過調制電信號提升特征分辨率與靈敏度,并結合軟件算法優化信噪比,實現顯微成像下超高靈敏度的熱信號測量。RTTLIT P20搭載100Hz高頻深制冷型超高靈敏度顯微熱紅外成像探測器,測溫靈敏度達0.1mK,顯微分辨率低至2μm,具備良好的檢測靈敏度與測試效能。該系統重點應用于對測溫精度和顯微分辨率要求嚴苛的場景,包括半導體器件、晶圓、集成電路、IGBT、功率模塊、第三代半導體、LED及microLED等的失效分析,是電子集成電路與半...
在產品全壽命周期中,失效分析以解決失效問題、確定根本原因為目標。通過對失效模式開展綜合性試驗分析,它能定位失效部位,厘清失效機理 —— 無論是材料劣化、結構缺陷還是工藝瑕疵引發的問題,都能被系統拆解。在此基礎上,進一步提出針對性糾正措施,從源頭阻斷失效的重復發生。 作為貫穿產品質量控制全流程的關鍵環節,失效分析的價值體現在對全鏈條潛在風險的追溯與排查:在設計(含選型)階段,可通過模擬失效驗證方案合理性;制造環節,能鎖定工藝偏差導致的批量隱患;使用過程中,可解析環境因素對性能衰減的影響;質量管理層面,則為標準優化提供數據支撐。 熱紅外顯微鏡采用先進的探測器,實現對微小熱量變化的快...
紅外顯微鏡(非熱紅外)與熱紅外顯微鏡應用領域各有側重。前者側重成分分析,在材料科學中用于檢測復合材料界面成分、涂層均勻性及表面污染物;生物醫藥領域可識別生物組織中蛋白質等分子分布,輔助診斷;地質學和考古學中能鑒定礦物組成與文物顏料成分;食品農業領域則用于檢測添加劑、農藥殘留及農作物成分。熱紅外顯微鏡聚焦溫度與熱特性研究,電子半導體領域可定位芯片熱點、評估散熱性能;材料研究中測試熱分布均勻性與熱擴散系數;生物醫藥領域監測細胞代謝熱分布及組織熱傳導;工業質檢能檢測機械零件隱形缺陷,評估電池充放電溫度變化。二者應用有交叉,但分別為成分分析與熱特性研究。熱紅外顯微鏡利用其高分辨率,觀察半導體制造過程中...