耐磨性是陶瓷涂層重要的應用性能之一。一般可通過磨損試驗測量涂層的磨損速率來進行表征。納米陶瓷涂層的耐磨性明顯優于常規陶瓷涂層,如圖3。圖3納米陶瓷涂層與傳統陶瓷涂層磨損性能對比4熱導率熱導率是表征陶瓷涂層的主要性能指標。常用來確定陶瓷涂層熱導率的方法有激光法和調制波法等。熱導率隨晶粒的變小而降低。這主要是由于隨著晶粒尺寸的減小,涂層內部的微觀界面增多,界面距離減小,使熱傳導過程中聲子的平均自由程降低。隨著聲子平均自由程的降低,材料熱導率也隨之減小,故納米ZrO2陶瓷涂層隔熱性能要優于普通微米ZrO2涂層。金屬表面涂覆納米陶瓷具有耐磨自潤滑功能.工業納米陶瓷涂覆加工
陶瓷復合隔膜—結構分類結構成膜方法性能特點單層復合涂覆陶瓷層只分布在基膜的一側具有陶瓷層、基膜的雙層結構雙層復合涂覆或靜電紡絲陶瓷層分布在基膜的前后兩側,具有陶瓷層、基膜、陶瓷層的三層對稱結構;或兩層基膜中間夾陶瓷層的三明治結構。體相復合涂覆陶瓷粒子分布在基膜的三維網絡孔道中,具有均勻的復合結構。原為復合濕法或靜電紡絲陶瓷粒子預先分散在成膜溶液中,成膜后被有機材料包覆,結構穩定。全陶瓷隔膜模壓、高溫燒結無機膜膜層厚質地硬無韌性陶瓷復合隔膜—成膜工藝陶瓷復合隔膜主要成膜工藝有涂覆、靜電紡絲、濕法、模壓及高溫燒結。上海工程納米陶瓷涂覆廠家納米Al2O3/TiO2涂層具有優異的強韌性。
納米陶瓷涂層的制備及應用初末粉體金屬表面陶瓷涂層技術將基體金屬材料和陶瓷涂層的優點結合起來,發揮綜合優勢,可以滿足結構性能(強度、韌性等)和環境性能(耐磨、耐蝕、耐高溫等)的需要。但普通陶瓷涂層存在脆性高、結合強度低、易出現裂紋等缺點,而納米陶瓷涂層則由于晶粒細化,晶界數量大幅增加,材料的強度、韌性、超塑性等性能明顯提高。納米陶瓷涂層的制備制備納米結構陶瓷涂層的常用方法主要有等離子噴涂、電泳沉積、熱化學反應、微弧氧化、激光熔覆、磁控濺射鍍膜等。
堆焊技術:是用特種耐磨焊條將高錳鋼、高鉻鑄鐵、或其它耐磨金屬材料堆焊在易磨損的金屬表面,用來提高金屬表面的耐磨性。主要缺點:耐磨性無明顯提高,大面積施工的工作量太大。③熱噴涂(焊)技術:是用等離子火焰噴涂、電弧噴涂、噴涂等方法,在金屬易磨損表面噴涂陶瓷碳化鎢或者噴焊鎳基+碳化鎢合金等小顆粒或粉末耐磨材料,用來保護易磨損表面。主要缺點:需要工具,不適合現場施工。易造成工件應力分布不均勻,甚致出現裂縫。④貼陶瓷片技術:是將耐磨工程陶瓷片通過粘貼、焊接、鑲嵌等方法與金屬基體復合在一起,達到保護易磨損表面作用。主要缺點:陶瓷片易碎裂、易脫落,非平面形狀不易貼合,厚度無法調整等離子噴涂分為大氣等離子噴涂(APS)。
物相沉積物相沉積技術主要包括高頻濺射(RFS)、磁控濺射(MS)、離子束混合沉積(BIM)、分子束外延(MBE)、原子層外延(ALE)、離子束增強沉積(ED)、電子束輔助沉積(IBAD)、電子束蒸發(EB)、脈沖激光沉積(PLD)、電子束物相沉積(EB-PVD)等。物相沉積技術可用于制備氧化物、氮化物、碳化物的納米涂層,也能沉積金屬、化合物的多層或復合納米涂層。制備的涂層附著力強,工件不受熱變形,這種好的一點就是但其設備較昂貴,沉積效率低,不適宜制備厚涂層。柔韌性較好、抗開裂、覆蓋細微裂紋,可延長墻體使用壽命。哪里有納米陶瓷涂覆費用
金屬表面陶瓷涂層技術將基體金屬材料和陶瓷涂層的優點結合起來。工業納米陶瓷涂覆加工
溶膠-凝膠法溶膠-凝膠法(sol-gel)是60年代發展起來的一種制備玻璃、陶瓷等無機材料的新方法。近年來許多研究者利用該方法制備納米復合薄膜。其基本步驟是先用金屬無機鹽或有機金屬化合物在低溫下液相合成為溶膠,然后采用提拉或旋涂的方法使溶液吸附在襯底上,經膠化過程成為凝膠,然后在一定溫度處理后即可得到納米復合涂層。此法設備簡單,操作方便,缺點是涂層與基體結合較差,難以制備厚涂層和大面積涂層。Cr合金與陶瓷中Al2O3、ZrO2附在基體表面,形成多孔性,使基體中的金屬分子也能擴散到陶瓷中,進而改善涂層結構與性能。工業納米陶瓷涂覆加工