不過,工廠化循環水養殖系統這個概念,較早形成于20世紀60~70年代的歐洲。該系統較初的思路是通過改進傳統的流水養殖,以儲水為目的,讓養殖場在枯水期保證有足夠的水源進行養殖。隨著歐洲在循環水養殖技術持續實踐,加入提升效率、跨自然限制和環保等養殖需求,發展出如今我們所熟知的工廠化循環水養殖系統。發展至今,工廠化循環水養殖系統已形成魚池、凈化系統、溫控系統、增氧系統和殺菌消毒系統多個子模塊。通過機械、生化過濾等設備,將魚池中出現的廢料和有毒物質進行過濾或轉化,從而凈化水質,循環利用;溫控系統和增氧系統則負責保證養殖池水的水溫和溶氧,提供適宜水生物的生長環境;殺菌消毒系統則負責消除水體中病毒、細菌等外來致病原體。創新養殖融資模式,降低企業運營成本。吉林微生物工廠化水產養殖方式
養殖場所選擇:選擇合適的養殖場所是石斑魚養殖成功的頭一步。首先,應當選擇未受污染的海域,因為水質的好壞直接影響石斑魚的生長和健康。理想的養殖地點應避開工廠廢水、農業污染以及生活污水的排放區。此外,所選地點應具備良好的避風條件,這樣可以減少養殖過程中因天氣變化造成的風險,特別是減少臺風對網箱的破壞。海域的水流速度也要適中,既能保證水體流通,帶來新鮮的海水,又不會因流速過快影響魚類的生長。在冬季,水溫不應低于15℃,以確保石斑魚能在適宜的溫度中生長。同時,水中的溶解氧含量需要保持在5毫克/升以上,水的鹽度要維持在16‰以上,這樣的條件能夠為石斑魚提供一個健康的生長環境。河北循環水工廠化水產養殖流程養殖技術研發,為工廠化養殖提供技術支撐。
現代工廠化循環水養殖系統通常配備了智能化管理設備,這些設備可以實時監控和調節養殖環境中的各種參數,提高管理效率。通過傳感器和自動控制系統,養殖者可以遠程監控水質、溫度、氧氣濃度等關鍵指標,并在異常情況下快速采取措施。這種智能化管理不僅減少了人工操作的錯誤率,還提高了養殖的整體效率,使得養殖者能夠更專注于生產策略和市場開發。隨著物聯網技術的發展,智能化管理系統還將進一步整合大數據分析,為決策提供更全方面和精確的支持。
在這個關鍵時期,農業農村部、中間網絡安全和信息化委員會辦公室聯合印發了《數字農業農村發展規劃(2019—2025年)》《“十四五”全國農業機械化發展規劃》等一系列文件,這些文件的出臺給水產養殖智慧化發展注入了新的動力。盡管面臨種種問題和挑戰,但與各類水產養殖生產模式相比,工廠化循環水養殖可以實現生產效率較高、生態環境保持較佳、動物福利得到加強的目標,綠色、生態、循環、高效,表示著未來水產養殖業發展方向。隨著我國漁業現代化、智能化水平的不斷提高,新技術新材料不斷出現,將給循環水養殖模式帶來新的發展機遇。工廠化養殖要關注節能減排,降低生產過程中的碳排放。
為提升這一領域環境管理能力,建議如下:嚴格落實建設項目環境影響評價。建設工廠化循環水養殖系統通常需要硬化地面、埋設管道,土地性質應為建設用地或農業設施用地。根據《建設項目環境影響評價分類管理名錄》(2021年版)規定,用海面積1000畝以下100畝及以上的工廠化養殖項目和涉及環境敏感區的海水、淡水養殖項目應編制《建設項目環境影響報告表》,須報生態環境部門審批,其他項目應在“建設項目環境影響登記表備案系統”備案。養殖企業可結合當地產業政策、所處區位、土地性質和發展規模等因素,在項目開工建設前,提交環評審批或備案,審批通過或完成備案方可建設,避免“未批先建”“邊批邊建”。配套建設的養殖尾水處理設施設備經驗收合格方可投產使用。養殖企業可以通過申辦《水域灘涂養殖許可證》,保障自身權益。養殖業與農產品加工業結合,拓展產業鏈條。吉林微生物工廠化水產養殖方式
工廠化養殖有助于提高漁業抗風險能力,保障國家糧食安全。吉林微生物工廠化水產養殖方式
水處理區,根據養殖品種確定水體指標和生存需求,是否需要添加礦物質等成分調配水體,如果是淡水調配海水,也在這個環節。調配好后,進行常規方式初步的消毒、殺菌、曝氣。然后通過砂濾器、微米過濾器、活性炭過濾器等物理過濾,去除水中顆粒物質、懸浮物、微生物及吸附化學物質。 再經過蛋白分離器,產生大量特定大小、組合的微氣泡,處理水中有機物、懸浮物、蛋白質等有害物質。較后經過防火墻,內含臭氧發生器,殺滅水中的各種細菌、病毒、蟲卵及藻類細胞等。吉林微生物工廠化水產養殖方式