局部放電(PD)是變壓器內部絕緣劣化的征兆之一,如同絕緣系統發出的“求救信號”。變壓器局放在線監測技術通過實時捕捉、分析這些微弱的放電脈沖,在絕緣故障引發災難性后果(如擊穿)之前實現預警和監測,是電力設備安全運行的“前沿哨兵”。監測原理與技術方案:變壓器內部放電會產生豐富的物理效應:電磁脈沖:放電瞬間產生納秒級高頻電流脈沖和電磁波。超聲波:放電點氣體膨脹或收縮產生壓力波。主流監測方法根據感知原理部署:超高頻(UHF)法-主流且靈敏:原理:在變壓器箱壁或內置傳感器(如盆式絕緣子處),捕獲300MHz-3GHz頻段的電磁波信號。部署:外置天線(非侵入)或內置傳感器(需預留接口)。高頻電流互感器(HFCT)法:原理:在變壓器中性點、鐵芯/夾件接地線或套管末屏接地線上安裝HFCT,捕捉沿接地線傳播的放電脈沖電流。優勢:安裝相對簡便,成本較低,可監測與接地線耦合的放電。聲學(AE)法:原理:在變壓器外殼多點安裝超聲波傳感器,接收放電產生的聲波信號。聯合監測(趨勢):結合UHF+AE或UHF+HFCT,利用多物理量信息互補,提升診斷可靠性。 混合介質放電在多種介質中同時發生,放電脈沖較寬且與電壓相位有關。北京GIS局放在線監測解決方案
局部放電是電纜絕緣老化和故障的早期征兆之一。當電纜絕緣材料存在缺陷,如氣隙、雜質或受潮時,會在高電場作用下產生局部放電現象。局部放電不僅會加速絕緣材料的老化,還可能引發絕緣擊穿故障。因此,局部放電監測是電纜在線監測的重要內容。局部放電監測技術主要有脈沖電流法、超聲波法和高頻電流法等。脈沖電流法是通過在電纜接地線上安裝傳感器,檢測局部放電產生的脈沖電流信號。這種方法的優點是靈敏度高,能夠檢測到微弱的放電信號,但容易受到外部電磁干擾的影響。超聲波法則是利用局部放電產生的超聲波信號進行檢測。當局部放電發生時,會產生高頻的超聲波,通過在電纜附近安裝超聲波傳感器,可以檢測到這些信號并對其進行定位。超聲波法的優點是抗干擾能力強,能夠對局部放電的位置進行較為準確的判斷,但其檢測范圍相對較小。高頻電流法則是通過檢測高頻電流信號來實現局部放電的監測。這種方法結合了脈沖電流法和超聲波法的優點,具有較高的靈敏度和抗干擾能力。隨著數字化技術的發展,局部放電監測系統也在不斷智能化,能夠對監測到的信號進行自動分析和診斷,及時發現電纜的潛在故障隱患,為電纜的安全運行提供有力保障。 GIS局部放電在線監測解決方案電纜外力破壞預警需聯動聲光報警裝置。
超聲波法是基于局部放電過程中產生的超聲波信號進行監測的一種方法。當局部放電發生時,放電產生的能量不僅會以電磁波的形式釋放,還會以機械波的形式傳播,這些機械波的頻率通常在超聲波范圍(20kHz以上)。超聲波法通過在設備表面或內部安裝超聲波傳感器來檢測這些超聲波信號。超聲波傳感器能夠將接收到的超聲波信號轉換為電信號,并傳輸到監測系統進行分析。超聲波法的優點是抗電磁干擾能力強,能夠在強電磁環境中穩定工作。此外,超聲波信號的傳播方向與局放源的位置密切相關,因此可以通過多個傳感器的信號到達時間差來定位局放源的位置。然而,超聲波法的缺點是檢測范圍相對較小,且超聲波信號在介質中的傳播衰減較大,可能會導致信號強度較弱,難以檢測到遠處的局放信號。此外,超聲波信號的傳播特性還受到介質的物理性質(如密度、彈性模量)的影響,因此在不同介質中傳播時需要進行相應的校準。盡管存在這些局限性,超聲波法仍然是局放監測中一種重要的方法,尤其適用于需要準確定位局放源的場合。
溫度是GIS設備運行狀態的重要參數之一。GIS內部的電氣元件在運行過程中會產生熱量,如果溫度過高,可能會導致元件絕緣性能下降,甚至引發故障。因此,對GIS設備的溫度進行實時監測是保證設備安全運行的重要措施。GIS溫度監測主要通過安裝溫度傳感器來實現。這些傳感器可以安裝在GIS設備的外殼、母線連接處或其他關鍵部位,實時監測設備的運行溫度。目前,常用的溫度傳感器包括熱電偶、熱電阻和光纖溫度傳感器。熱電偶和熱電阻傳感器具有成本低、精度高的優勢,但需要通過導線連接,可能會受到電磁干擾。光纖溫度傳感器則具有抗電磁干擾能力強、測量范圍廣、精度高等優點,特別適用于GIS設備這種高電壓、強電磁場的環境。通過溫度監測,可以及時發現設備的異常發熱現象,提前采取措施進行處理,避免設備因過熱而損壞。此外,溫度監測數據還可以與其他監測數據(如局部放電、氣體泄漏等)結合,為GIS設備的綜合狀態評估提供了依據。 變壓器在線監測系統可實時監測變壓器運行狀態,保證設備安全。
電纜作為電力傳輸的“大動脈”,其運行狀態直接影響電網安全。在線監測系統通過實時感知關鍵參數,構建起電纜的“數字神經系統”,實現從被動搶修到主動監測的運維變革。監測參數:電氣狀態:接地電流/環流:監測金屬護層接地線電流,判斷護層絕緣破損、多點接地故障及環流損耗,防止護層過熱。局部放電(PD):通過安裝在護層接地線或電纜本體的HFCT、TEV或超聲波傳感器,捕捉絕緣內部缺陷(如氣隙、雜質、老化)產生的微弱放電信號,評估絕緣劣化程度。溫度狀態:接頭/終端溫度:采用DTS光纖(長距離連續)、無線測溫傳感器(單點),實時監測接頭壓接點、應力錐等部位溫度,預警接觸不良、過載導致的過熱問題。電纜表面/通道環境溫度:了解運行環境,輔助分析溫升原因。運行工況:負荷電流:結合溫度數據,分析載流能力與熱平衡狀態,優化調度。電壓:監測運行電壓水平,評估過電壓問題。電纜局部放電在線監測通過高頻電流傳感器檢測局放產生的脈沖電流,評估電纜絕緣狀態。廣東GIS局放在線監測解決方案
開關柜局放監測利用特高頻(UHF)技術檢測高頻電磁波信號,能發現微小局放。北京GIS局放在線監測解決方案
鐵芯接地電流在線監測技術的應用,為電力設備狀態檢修和資產管理帶來了提升。其價值在于實現了對變壓器“心臟”——鐵芯運行狀態的實時感知,將傳統的故障后被動檢修轉變為基于狀態預知的主動維護。通過持續監測,運維人員能在故障早期甚至萌芽期就準確識別鐵芯多點接地、懸浮電位、絕緣劣化等問題,從而及時干預處理,避免設備嚴重損壞和代價高昂的非計劃停運。該技術提升了大型電力變壓器的運行可靠性和使用壽命,降低了檢修成本和故障l,安全、經濟效益巨大。展望未來,隨著物聯網(IoT)、邊緣計算和人工智能(AI)技術的飛速發展,鐵芯接地電流監測將更加智能化:邊緣計算節點實現本地實時分析與初步診斷;AI深度學習算法用于挖掘更復雜的故障模式、預測剩余壽命;監測數據深度融入智慧電廠/變電站平臺,與SCADA、設備管理系統無縫集成,為電網數字化、智能化運維提供強大支撐,邁向變壓器全生命周期管理的更高境界。 北京GIS局放在線監測解決方案