隨著電力電子技術、自動化控制技術的不斷發展,電機在工業生產以及家用電器中得到了***的應用,在市場競爭中正逐步顯示自己的優勢。傳統的電機在線監測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統的監測方法要求監測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態和故障。技術實現要素:本發明提出了一...
隨著科技發展, 各類工程設備的工作和運行環境變得越來越復雜. 作為機械設備的關鍵零部件, 滾動軸承在長期大載荷、強沖擊等復雜工況下, 極易產生各種故障, 導致機械工作狀況惡化. 針對軸承的故障預測與健康管理技術應運而生. 若能在故障發生初期即進行準確、可靠的檢測和診斷, 則有助于進行及時維修, 避免嚴重事故的發生. 早期故障檢測已成為PHM的關鍵技術環節之一. 近年來, 隨著傳感技術和機器學習技術的快速發展, 數據驅動的智能化故障檢測和診斷技術受到***關注. 如何利用歷史采集的狀態監控數據、提高目標軸承早期故障檢測結果的準確性和穩定性成為研究熱點和難點, 具有明確的學術價值和應用需求.本文關...
著科技發展,各類工程設備的工作和運行環境變得越來越復雜.作為機械設備的關鍵零部件,滾動軸承在長期大載荷、強沖擊等復雜工況下,極易產生各種故障,導致機械工作狀況惡化.針對軸承的故障預測與健康管理(Prognosticsandhealthmanagement,PHM)技術應運而生.若能在故障發生初期即進行準確、可靠的檢測和診斷,則有助于進行及時維修,避免嚴重事故的發生.早期故障監測已成為PHM的關鍵技術環節之一.近年來,隨著傳感技術和機器學習技術的快速發展,數據驅動的智能化故障監測和診斷技術受到***關注.如何利用歷史采集的狀態監控數據、提高目標軸承早期故障檢測結果的準確性和穩定性成為研究熱點和難...
刀具損壞的形式主要是磨損和破損。在現代化的生產系統(如FMS、CIMS等)中,當刀具發生非正常的磨損或破損時,如不能及時發現并采取措施,將導致工件報廢,甚至機床損壞,造成很大的損失。因此,對刀具狀態進行監控非常重要。刀具破損監測可分為直接監測和間接監測兩種。所謂直接監測,即直接觀察刀具狀態,確認刀具是否破損。其中**典型的方法是ITV(IndustrialTelevision,工業電視)攝像法。間接監測法即利用與刀具破損相關的其它物理量或物理現象,間接判斷刀具是否已經破損或是否有即將破損的先兆。這樣的方法有測力法、測溫法、測振法、測主電機電流法和測聲發射法等。盈蓓德科技通過在機測量和檢測,進行...
動力裝備全壽命周期監測診斷方面:實現了支持物聯網的智能信息采集與管理、全生命周期動態自適應監測、早期非線性故障特征提取。優化重構出綜合體現裝備運行工況及表現的新參數,提高異常狀態辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發展規律,來提高故障早期辨識能力。動力裝備全生命周期性能優化服務方面:提供了轉子全息動平衡快速響應與服務支持、以全息譜為**的失衡故障確診、動力裝備轉子和軸系平衡配重方案優化。基于物聯網和網絡化監測診斷將產品監測診斷與運行服務支持有機集成一體,在應用中實現動力裝備常見故障診斷準確率達80%以上。可應用于風力大電機、空壓機、氮壓機等大型動力裝備的集群化診斷領域。...
基于數據的故障檢測與診斷方法能夠對海量的工業數據進行統計分析和特征提取,將系統的狀態分為正常運行狀態和故障狀態,可視為模式識別任務。故障檢測是判斷系統是否處于預期的正常運行狀態,判斷系統是否發生異常故障,相當于一個二分類任務。故障診斷是在確定發生故障的時候判斷系統處于哪一種故障狀態,相當于一個多分類任務。因此,故障檢測和診斷技術的研究類似于模式識別,分為4個的步驟:數據獲取、特征提取、特征選擇和特征分類。1)數據獲取步驟是從過程系統收集可能影響過程狀態的信號,包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號映射為有辨識度的系統狀態信息;3)特征選擇步驟是將與狀態變化相關的變量提取出...
不停機情況下的早期故障在線監測問題.這種方式有助于實時評估軸承工作狀態,避免因等待停機檢查而產生延誤、造成經濟損失,因此對早期故障的在線檢測越來越受到工業界的重視.由于在線應用場景的制約,與一般故障檢測相比,早期故障在線檢測具有如下需求:1)檢測結果應具有較好的實時性,能盡可能快速準確地識別出早期故障;2)檢測結果應具有較好的魯棒性,能盡可能避免正常狀態下輕微異常波動的影響,相比于漏報警(現有方法對成熟故障檢測已較成熟),更需避免誤報警;3)檢測模型應具有較高的可靠性,在線檢測過程中無需反復進行閾值設定和模型優化.上述需求對檢測方法提出了新的挑戰.在線場景下的早期故障監測基本是采用現有的早期故...
設備監測是指對設備運行狀態進行實時或定期的監測和檢測,以獲取設備的關鍵性能指標、故障信息等數據,并對這些數據進行分析、處理和解釋,以便及時發現設備的健康狀況,并根據監測結果制定相應的維護計劃和改進措施。設備監測通常通過傳感器、監測系統、計算機軟件等技術手段進行實現,以提高設備的可靠性、可用性和效率,降低設備故障率和維修成本,提高設備的生命周期價值。設備監測在制造業、能源、交通、建筑、環保等領域得到廣泛應用。設備監測一般分為以下步驟:①從設備上收集數據;②將收集到的數據傳輸至平臺,如PreMaint設備健康管理平臺;③監控和分析收集到的設備數據。盈蓓德科技提供高性價比的電機設備狀態監測和故障預判...
刀具監測主要采用人工檢測、離線檢測和在線檢測三種策略。人工檢查是指工人在加工過程中可以憑經驗檢查刀具的狀態;離線檢測是在加工前專門對刀具進行檢測,預測其壽命,看是否能勝任當前的加工;在線檢測又稱實時檢測,是在加工過程中對刀具進行實時檢測,并根據檢測結果做出相應的處理。目前刀具檢測的算法有很多,有的是利用理論計算刀具上應力的變化來判斷刀具的損傷.有的是利用時間序列分析來檢測刀具,有的是利用神經網絡技術來檢測刀具。還有的是利用小波變換理論和神經網絡技術來檢測刀具,但都是以理論為主。考慮到刀具的塑性損傷在數控加工中很少發生,磨損對數控加工的安全性影響很小,并且可以通過離線檢測進行加工,通過在線檢測,...
目前設備狀態監測及故障預警若干關鍵技術可歸納如下:(1)揭示設備運行狀態機械動態特性劣化演變規律。設備由非故障運行狀態劣化為故障運行狀態,其機械動態特性通常有一個發展演變過程。需揭示劣化過程及故障變化演變規律及發展特點,分析故障產生機理、發展原因和發展模式,構建劣化演變機械動態特性模型。(2)提取設備運行狀態發展趨勢特征。在役設備往往具有復雜運行狀態,在長歷程運行中工況和負載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進而構建預測模型。若提取到敏感特征分量因子及模式,有望實現典型部件及部位分析。隨著工業互聯網的落地,大型旋轉類...
著科技發展,各類工程設備的工作和運行環境變得越來越復雜.作為機械設備的關鍵零部件,滾動軸承在長期大載荷、強沖擊等復雜工況下,極易產生各種故障,導致機械工作狀況惡化.針對軸承的故障預測與健康管理(Prognosticsandhealthmanagement,PHM)技術應運而生.若能在故障發生初期即進行準確、可靠的檢測和診斷,則有助于進行及時維修,避免嚴重事故的發生.早期故障監測已成為PHM的關鍵技術環節之一.近年來,隨著傳感技術和機器學習技術的快速發展,數據驅動的智能化故障監測和診斷技術受到***關注.如何利用歷史采集的狀態監控數據、提高目標軸承早期故障檢測結果的準確性和穩定性成為研究熱點和難...
隨著科技發展, 各類工程設備的工作和運行環境變得越來越復雜. 作為機械設備的關鍵零部件, 滾動軸承在長期大載荷、強沖擊等復雜工況下, 極易產生各種故障, 導致機械工作狀況惡化. 針對軸承的故障預測與健康管理技術應運而生. 若能在故障發生初期即進行準確、可靠的檢測和診斷, 則有助于進行及時維修, 避免嚴重事故的發生. 早期故障檢測已成為PHM的關鍵技術環節之一. 近年來, 隨著傳感技術和機器學習技術的快速發展, 數據驅動的智能化故障檢測和診斷技術受到***關注. 如何利用歷史采集的狀態監控數據、提高目標軸承早期故障檢測結果的準確性和穩定性成為研究熱點和難點, 具有明確的學術價值和應用需求.本文關...
整體的網絡架構來看,智能振動噪聲監診子系統利用安裝在設備上的傳感器節點獲取設備的健康狀態監測信號和運行參數數據,經網絡層集中上傳至設備健康監測物聯網綜合管理平臺,實現數據傳輸。應用層實現監測信號的分析?故障特征提取?故障診斷及預測功能,實現智能化管理?應用和服務。設備健康監測物聯網綜合管理平臺具有強大的數據采集分析處理?數據可視?設備運維?故障診斷?故障報警等功能。通過實時監測查看?統計?追溯,實現對其管轄設備的實時監測和運行維護,基于運行信息和檢修信息?自動生成設備管理報表,實現設備可靠性?故障數據?更換備件等信息統計,為維修方案提供依據。電機故障監測和診斷可根據當前檢測的運行狀態對可能發生...
常見的設備監測數據包含以下幾類:1.運行數據:包括設備的運轉時間、運轉速度、負載情況、溫度、壓力等參數。這些數據可以反映設備的運行狀態和性能表現,以便進行運行效率評估、健康狀況評估以及預測維護等。2.電氣數據:包括設備的電流、電壓、功率、電阻等參數。這些數據可以反映設備的電氣性能和電能消耗情況,以便進行能效評估、設備故障診斷等。3.振動數據:包括設備的振動幅值、頻率、相位等參數。這些數據可以反映設備的振動情況,以便進行故障診斷和預測維護等。4.聲音數據:包括設備的聲音頻率、聲音強度、聲音特征等參數。這些數據可以反映設備的聲學性能,以便進行故障診斷和預測維護等。5.圖像數據:包括設備的照片、視頻...
刀具損壞的形式主要是磨損和破損。在現代化的生產系統(如FMS、CIMS等)中,當刀具發生非正常的磨損或破損時,如不能及時發現并采取措施,將導致工件報廢,甚至機床損壞,造成很大的損失。因此,對刀具狀態進行監控非常重要。刀具破損監測可分為直接監測和間接監測兩種。所謂直接監測,即直接觀察刀具狀態,確認刀具是否破損。其中**典型的方法是ITV(IndustrialTelevision,工業電視)攝像法。間接監測法即利用與刀具破損相關的其它物理量或物理現象,間接判斷刀具是否已經破損或是否有即將破損的先兆。這樣的方法有測力法、測溫法、測振法、測主電機電流法和測聲發射法等。盈蓓德科技自主開發了旋轉設備在線振...
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現早期故障有效分析,涉及方法包括:多傳感系統檢測及信息融合,非平穩及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規律與特點分析,以及相關數據挖掘、盲源分離、粗糙集等方法。故障預測模型構建。構建基于智能信息系統的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數據信息預測模型,或構建這兩類預測模型相融合的預測模型。運行狀態劣化的相關評價參數、模式及準則。如表征設備狀態發展的參數及特征模式,狀態發展評價準則及條件,面向安全保障的決策理論方法,穩定性、可靠性及維修性評估依據及判據...
現代化生產企業為了極大限度地提高生產水平和經濟效益,不斷地向規模化和高技術技術含量發展,因此生產裝置趨向大型化、高速高效化、自動化和連續化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續運行的生產設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發生故障后會引起公害的設備。傳統的事后維修和定期維修帶來的過剩維修或失修,使維修費用在生產...
整體的網絡架構來看,智能振動噪聲監診子系統利用安裝在設備上的傳感器節點獲取設備的健康狀態監測信號和運行參數數據,經網絡層集中上傳至設備健康監測物聯網綜合管理平臺,實現數據傳輸。應用層實現監測信號的分析?故障特征提取?故障診斷及預測功能,實現智能化管理?應用和服務。設備健康監測物聯網綜合管理平臺具有強大的數據采集分析處理?數據可視?設備運維?故障診斷?故障報警等功能。通過實時監測查看?統計?追溯,實現對其管轄設備的實時監測和運行維護,基于運行信息和檢修信息?自動生成設備管理報表,實現設備可靠性?故障數據?更換備件等信息統計,為維修方案提供依據。β-Star監測系統是盈蓓德智能科技有限公司的產品,...
現代電力系統中發電機的單機容量越大型發電機在電力生產中處于主力位置,同時大型發電機由于造價昂貴,結構復雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國目前和今后很長一段時間內的缺電、用電緊張的狀況而言,發電機的年運行小時數目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監測與診斷,做到早期預警以防止事故的發生或擴大具有重要的現實意義。通常對發電機的“監測”與“診斷”在內容上并無明確的劃分界限,可以說監測的數據和結果即為診斷的依據。監測利用各種傳感器在電機運行時對電機的狀態提取相關數據。故障診斷使用計算機及其相應智能軟...
預測性維護應運而生。其是以狀態為依據的維修,主要是對設備在運行中產生的二次效應(如振動、噪聲、沖擊脈沖、油樣成分、溫度等)進行連續在線的狀態監測及數據分析,診斷并預測設備故障的發展趨勢,提前制定預測性維護計劃并實施檢維修的行為。總體來看,狀態監測和故障診斷是判斷預測性維護是否合理的根本所在,數據狀態的連續監測和遠程傳輸上傳相對已經比較成熟,而狀態預測和故障診斷主要還是依靠人工分析實現,診斷分析人員通過趨勢?波形?頻譜等專業分析工具,結合傳動結構?機械部件參數等信息,實現設備故障的精細定位。其發展趨勢是將物聯網及人工智能技術引入狀態預測及故障的智能診斷,從而降低誤判概率,大幅提升診斷效率和準確性...
在預防性維護的應用中,振動是大型旋轉等設備即將發生故障的重要指標,一是由于在大型旋轉機械設備的所有故障中,振動問題出現的概率比較高;另一方面,振動信號包含了豐富的機械及運行的狀態信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監測和診斷。旋轉類設備的預防性維護需要重點監控振動量的變化。其預測性診斷技術對于制造業、風電等的行業的運維具有非常重大的意義。通過設備振動等狀態的預測性維護,可以及時發現并解決系統及零部件存在問題。但是對于一些不是因為設備問題而存在的固有振動,振動強度的不必要增加會對部件產生有害的力,危及設備的使用壽命和質量。在這種情況下,則需要采用振動隔離技術來解決和...
遠程終端廣泛應用于工業互聯網、分布式數據采集、設備狀態的在線監測,能夠進行前端數據清洗和邊緣計算,通過對歷史數據趨勢分析、設備數據機理分析、統計分析等大數據分析,對設備的狀態做出有效可靠的健康狀態評判,從而切實有效的提高設備的維護能力。遠程終端可實現對電源電壓、設備狀態的自檢,分析計量故障等信息,及時發現計量異常。現場監測箱開門、斷電、設備運行等異常信息也能夠主動發送報警信息到監測中心,實現設備在線監診的準確性、完整性、及時性和可靠性。電機故障監測和診斷可根據當前檢測的運行狀態對可能發生的故障進行預判。溫州穩定監測系統供應商基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障...
故障診斷可以使系統在一定工作環境下根據狀態監測系統提供的信息來查明導致系統某種功能失調的原因或性質,判斷劣化發生的部位或部件,以及預測狀態劣化的發展趨勢等。電機故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號分析方法對負載電流的波形進行檢測從而診斷出電機設備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應和標準響應等;2、絕緣診斷法,利用各種電氣試驗裝置和診斷技術對電機設備的絕緣結構和參數、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預測;3、溫度檢測方法,采用各種溫度測量方法對電機設備各個部位的溫升進行監測,電機的溫升與各種故障現象相關;4、振動與噪聲診斷法,通過對電...
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現早期故障有效分析,涉及方法包括:多傳感系統檢測及信息融合,非平穩及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規律與特點分析,以及相關數據挖掘、盲源分離、粗糙集等方法。故障預測模型構建。構建基于智能信息系統的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數據信息預測模型,或構建這兩類預測模型相融合的預測模型。運行狀態劣化的相關評價參數、模式及準則。如表征設備狀態發展的參數及特征模式,狀態發展評價準則及條件,面向安全保障的決策理論方法,穩定性、可靠性及維修性評估依據及判據...
設備狀態監測和故障診斷技術是設備維護手段之一。設備的故障監測診斷技術,就是利用科學的檢測方法和現代化技術手段,對設備目前的運行狀態進行監測和排查,從而判斷出設備運行狀態的可靠性,確認其局部或整機是否正常運行。煤礦用機電設備溫度振動監測系統***用于煤礦主扇、壓風機、鋼絲繩牽引帶式輸送機、滾筒帶式輸送機、排水泵和電動機、提升機等,有助于掌握設備運行工況中的溫度振動數據。 提升機、鋼絲繩牽引、滾筒帶式輸送機、皮帶機、空壓機、壓風機、水泵等煤礦機電設備要求增加電動機及主要軸承溫度和振動監測。裝置功能:1、提升機、水泵、皮帶機等設備電動機主軸承溫度振動在線監測2、礦用高壓異步電動機軸承溫度振...
遠程終端廣泛應用于工業互聯網、分布式數據采集、設備狀態的在線監測,能夠進行前端數據清洗和邊緣計算,通過對歷史數據趨勢分析、設備數據機理分析、統計分析等大數據分析,對設備的狀態做出有效可靠的健康狀態評判,從而切實有效的提高設備的維護能力。遠程終端可實現對電源電壓、設備狀態的自檢,分析計量故障等信息,及時發現計量異常。現場監測箱開門、斷電、設備運行等異常信息也能夠主動發送報警信息到監測中心,實現設備在線監診的準確性、完整性、及時性和可靠性。刀具狀態的監測系統是在充分考慮對刀具狀態密切相關的敏感特征參數的基礎上,利用人工神經網絡模型實現。上海EOL監測控制策略動力裝備全壽命周期監測診斷方面:實現了支...
設備早期故障診斷是設備全生命周期健康狀態監測診斷體系的重要環節.盡早對設備潛在的故障作出可靠判斷,對于保障設備的可靠運行具有重要意義.早期故障特征提取技術是檢測設備早期故障的有效工具.研究了典型的設備故障發展過程,以早期故障特征提取技術為基礎,結合多技術融合方法,建立了設備全生命周期健康狀態監測診斷體系,以促進設備廠家改進生產制造質量,流程工業企業優化檢維修流程.應用以早期故障特征提取技術為重點的多技術融合方法,打造設備從生產制造,出廠檢驗到現場應用的全生命周期健康狀態監測診斷閉環,實現了設備健康狀態的全程可控.電機的狀態監測,以采集的電機電流和振動信號為例,可以采用多特征融合的故障診斷方法。...
作為工業領域的一種關鍵旋轉設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經有很多智能產品號稱可以實現電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態監測需要振動、噪聲、溫度傳感器,通訊協議并不統一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業場景設備類型多,運行工況復雜,預測性維護算法涉及數據預處理、工業機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現,前期需要大量歷史數...
深度學習技術已在滾動軸承故障監測和診斷領域取得了成功應用, 但面對不停機情況下的早期故障在線監測問題, 仍存在著早期故障特征表示不充分、誤報警率高等不足. 為解決上述問題, 本文從時序異常檢測的角度出發, 提出了一種基于深度遷移學習的早期故障在線檢測方法. 首先, 提出一種面向多域遷移的深度自編碼網絡, 通過構建具有改進的比較大均值差異正則項和Laplace正則項的損失函數, 在自適應提取不同域數據的公共特征表示同時, 提高正常狀態和早期故障狀態之間特征的差異性; 基于該特征表示, 提出一種基于時序異常模式的在線檢測模型, 利用離線軸承正常狀態的排列熵值構建報警閾值, 實現在線數據中異常序列的...
刀具切削狀態的實時監測與管理也是實現制造系統現代化、自動化、柔性化的基礎。出現于90年代的智能刀具技術受到越來越多的關注,并在近20年來得到迅速發展。精確地預報刀具在加工中,尤其是在制造成本極高的精密零件加工中的失效時間對提高零件的加工效率和質量、減少生產成本及研制周期具有重要意義。日本京瓷工業陶瓷公司提出一種裝有磨損傳感器的可轉位刀片刀具壽命診斷系統。這種智能刀具系統采用Ceratip傳感器,它在正方形的陶瓷刀片表面上,涂覆一層厚度為0.3μm的TiN,刀具在開始切削時,使裝有傳感器的刀片涂覆層通過電流,形成一微電子回路。當刀具在切削力的作用下磨損時,刀片表面上的TiN涂覆層首先被破壞,這時...