鋼鐵零件經氮化處理后表面通常呈銀灰色或暗灰色(不同材質的工件,離子氮化后其表面顏色略有區別),鈦及鈦合金件表面應呈金黃色。表面電弧燒傷主要是由于工件表面、工件上的小孔中或焊接件的空腔內及組合件的接合面上存在含油雜質,引起強烈弧光放電所致。表面剝落起皮:產生起皮的機理還不十分清楚,但在生產實踐中,工件表面清理不凈、脫碳或氣份中含氧量過多、氮化溫度過高等有時會產生起皮。表面發藍或呈紫藍色這是氧化造成的,如果氧化是在氮化結束后停爐過程中產生的,則只影響外觀質量,對滲層硬度、深度無影響。如果氧化是在氮化過程中產生的,則將不僅影響到產品外觀,而且將直接影響到滲層硬度和深度。表面發藍的原因可能有:爐子系統漏氣,氣氛中含水及含氧量過多;工件各處的溫度不均勻,溫度過低的部位由于滲氮較弱而呈綠色;冷卻時工件各部位冷速不一致,冷得慢的部位可能呈藍色。表面發黑的原因可能是:爐子系統漏氣,氣氛中含水量及含氧量過高;溫度過高;工件上的油污及氧化皮未去凈等。離子氮化爐的絕緣材料。揭陽金屬表面離子氮化商家
離子氮化的常見缺陷:
一、硬度偏低生產實踐中,工件氮化后其表面硬度有時達不到工藝規定的要求,輕者可以返工,重者則造成報廢。造成硬度偏低的原因是多方面的:有設備方面的原因,如系統漏氣造成氧化;有選材方面的原因,如材料選擇不恰當;有前期熱處理方面的原因,如基本硬度太低,表面脫碳等;有工藝方面的原因,如氮化溫度過高或過低,時間短或氮勢不足而造成滲層太薄等等。只有根據具體情況,找準原因,問題才會得以解決。
二、硬度和滲層不均勻裝爐方式不當,氣壓調節不當(如供氣量過大),溫度不均,小孔、窄縫未屏蔽造成局面過熱等均會造成硬度和滲層不均勻。
三、變形超差變形是難以杜絕的,對易變形件,采取以下措施,有利于減小變形。氮化前應進行穩定化處理(處理次數可以是幾次)直至將氮化前的變形量控制在很小的范圍內(一般不應超過氮化后允許變形量的50%);氮化過程中的升、降溫速度應緩慢;保溫階段盡量使工件各處的溫度均勻一致。對變形要求嚴格的工件,如果工藝許可,盡可能采用較低的氮化溫度。 茂名金屬表面離子氮化性能金屬離子氮化注意事項。
離子氮化過程中,電壓、電流、氣壓、溫度和時間等參數的準確控制至關重要。電壓決定了離子的加速能量,影響氮離子的轟擊效果和氮化速度;電流反映了離子的數量,與氮化層的生長速率相關。氣壓需維持在合適范圍,保證氣體電離和輝光放電的穩定進行。溫度是影響氮化反應的關鍵因素,不同金屬材料和氮化要求對應不同的極好溫度區間,一般在 450 - 650℃之間。處理時間則根據氮化層深度和硬度要求而定,通常為 2 - 20 小時。通過合理調整這些參數,可精確控制氮化層的質量,滿足不同工件的性能需求,確保離子氮化工藝的高效、穩定運行。
離子氮化設備一般由電氣控制系統、真空爐體、滲劑氣體配氣系統、真空產生和維持系統、真空測量及控制系統等幾大部分組成。離子滲氮設備中重要的是電氣控制系統,根據控制系統電源種類的不同可分為直流電源(LD系列)和脈沖電源(LDMC系列)兩大類。大功率脈沖電源自上個世紀九十年代我所獨自研發成功以來,經過十多年的發展,發展到了第二代脈沖電源(PN-II),現已取代了直流電源,成為離子滲氮設備的優先電源。如果有離子氮化的需要,歡迎聯系。離子氮化使用手冊介紹。
離子氮化相較于傳統氮化工藝,具有眾多獨特優勢。首先,處理時間大幅縮短,一般只為氣體氮化的 1/3 - 1/2。這是因為離子的高速轟擊加速了氮原子的滲入,提高了氮化效率。其次,離子氮化在真空環境下進行,氮化層純凈,無雜質污染,表面質量高,能獲得更理想的硬度梯度和組織結構,有效提升材料的表面性能。再者,通過精確控制電壓、電流等參數,可實現對氮化層深度和硬度的準確調節,滿足不同工件的多樣化需求。此外,離子氮化還具有節能特性,能耗比氣體氮化低 30% - 40%,是一種綠色環保的氮化技術。離子氮化其中一個比較明顯的優點就是環保節能,是國家重點發展的氮化新工藝。云浮金屬離子氮化檢查
離子氮化哪里的廠家好?揭陽金屬表面離子氮化商家
離子氮化法的優點二:離子氮化是在真空中進行,因而可獲得無氧化的加工表面,也不會損害被處理工件的表面光潔度。而且由于是在低溫下進行處理,被處理工件的變形量極小,處理后無需再行加工。通過控制氣氛,可調節化合物層的相結構,化合物層的脆性明顯低于氣體氮化的脆性,離子氮化為工件的還有就是一道工序。離子氮化從380℃起即可進行氮化處理,此外,對鈦、鈦合金等特殊材料也可在850℃的高溫下進行氮化處理,因而適應范圍十分廣。離子氮化是在低氣壓下以離子注入的方式進行,因而耗氣量極少(只為氣體滲氮的百分之幾),可降低處理成本。揭陽金屬表面離子氮化商家