電激勵的鎖相熱成像系統在電子產業的柔性電子檢測中展現出廣闊的應用前景,為柔性電子技術的發展提供了關鍵的質量控制手段。柔性電子具有可彎曲、重量輕、便攜性好等優點,廣泛應用于柔性顯示屏、柔性傳感器、可穿戴設備等領域。然而,柔性電子材料通常較薄且易變形,傳統的機械檢測或接觸式檢測方法容易對其造成損傷。電激勵方式在柔性電子檢測中具有獨特優勢,可采用低電流的周期性激勵,避免對柔性材料造成破壞。鎖相熱成像系統能夠通過檢測柔性電子內部線路的溫度變化,識別出線路斷裂、層間剝離、電極脫落等缺陷。例如,在柔性顯示屏的檢測中,系統可以對顯示屏施加低電流電激勵,通過分析溫度場分布,發現隱藏在柔性基底中的細微線路缺陷,確保顯示屏的顯示效果和使用壽命。這一技術的應用,有效保障了柔性電子產品的質量,推動了電子產業中柔性電子技術的快速發展。本系統對鎖相處理后的振幅和相位數據進行分析,生成振幅熱圖和相位熱圖,并通過算法定位異常區域。半導體鎖相紅外熱成像系統工作原理
鎖相熱成像系統的維護保養是保證其長期穩定運行的關鍵。系統的維護包括日常的清潔、部件的檢查和更換等。對于紅外熱像儀的鏡頭,需要定期用專門的清潔劑和鏡頭紙進行清潔,避免灰塵和污漬影響成像質量。鎖相放大器、激光器等關鍵部件要定期進行性能檢查,確保其參數在正常范圍內。如果發現部件出現老化或故障,要及時進行更換,以避免影響系統的檢測精度。此外,系統的冷卻系統也需要定期維護,確保其能夠正常工作,防止因設備過熱而影響性能。做好維護保養工作,能夠延長鎖相熱成像系統的使用壽命,降低設備故障的發生率,保證檢測工作的順利進行。什么是鎖相紅外熱成像系統測試三維可視化通過相位信息實現微米級深度定位功能,能夠無盲區再現被測物內部構造。
這款一體化設備的核心競爭力,在于打破了兩種技術的應用邊界。熱紅外顯微鏡擅長微觀尺度的熱分布成像,能通過高倍率光學系統捕捉芯片表面微米級的溫度差異;鎖相紅外熱成像系統則依托鎖相技術,可從環境噪聲中提取微弱的周期性熱信號,實現納米級缺陷的精細定位。致晟光電通過硬件集成與算法優化,讓兩者形成 “1+1>2” 的協同效應 —— 既保留熱紅外顯微鏡的微觀觀測能力,又賦予其鎖相技術的微弱信號檢測優勢,無需在兩種設備間切換即可完成從宏觀掃描到微觀定位的全流程分析。
鎖相熱成像系統與電激勵結合,為電子產業的芯片失效分析提供了一種全新的方法,幫助企業快速定位失效原因,改進生產工藝。芯片失效的原因復雜多樣,可能是設計缺陷、材料問題、制造過程中的污染,也可能是使用過程中的靜電損傷、熱疲勞等。傳統的失效分析方法如切片分析、探針測試等,不僅操作復雜、耗時較長,而且可能會破壞失效芯片的原始狀態,難以準確找到失效根源。通過對失效芯片施加特定的電激勵,模擬其失效前的工作狀態,鎖相熱成像系統能夠記錄芯片表面的溫度變化過程,并將其與正常芯片的溫度數據進行對比分析,從而找出失效位置和失效原因。例如,當芯片因靜電損傷而失效時,系統會檢測到芯片的輸入端存在異常的高溫區域;當芯片因熱疲勞失效時,會在芯片的焊接點處發現溫度分布不均的現象。基于這些分析結果,企業可以有針對性地改進生產工藝,減少類似失效問題的發生。電激勵的脈沖寬度與鎖相熱成像系統采樣頻率需匹配,通過參數優化可大幅提高檢測信號的信噪比和清晰度。
在實際應用中,這款設備已成為半導體產業鏈的 “故障診斷利器”。在晶圓制造環節,它能通過熱分布成像識別光刻缺陷導致的局部漏電;在芯片封裝階段,可定位引線鍵合不良引發的接觸電阻過熱;針對 IGBT 等功率器件,能捕捉高頻開關下的瞬態熱行為,提前預警潛在失效風險。某半導體企業在檢測一批失效芯片時,傳統熱成像設備能看到模糊的發熱區域,而使用致晟光電的一體化設備后,通過鎖相技術發現發熱區域內存在一個 2μm 的微小熱點,終定位為芯片內部的金屬離子遷移缺陷 —— 這類缺陷若未及時發現,可能導致產品在長期使用中突然失效。鎖相熱成像系統縮短電激勵檢測的響應時間。thermal鎖相紅外熱成像系統訂制價格
電激勵模式多樣,適配鎖相熱成像系統不同需求。半導體鎖相紅外熱成像系統工作原理
當電子設備中的某個元件發生故障或異常時,常常伴隨局部溫度升高。熱紅外顯微鏡通過高靈敏度的紅外探測器,能夠捕捉到極其微弱的熱輻射信號。這些探測器通常采用量子級聯激光器等先進技術,或其他高性能紅外傳感方案,具備寬溫區、高分辨率的成像能力。通過對熱輻射信號的精細探測與分析,熱紅外顯微鏡能夠將電子設備表面的溫度分布以高對比度的熱圖像形式呈現,直觀展現熱點區域的位置、尺寸及溫度變化趨勢,從而幫助工程師快速鎖定潛在的故障點,實現高效可靠的故障排查。半導體鎖相紅外熱成像系統工作原理